タグ「分数」の検索結果

281ページ目:全4648問中2801問~2810問を表示)
千歳科学技術大学 私立 千歳科学技術大学 2013年 第1問
次の各問いに答えなさい.

(1)$a^3+b^3+c^3-3abc$を因数分解しなさい.
(2)$\displaystyle y=x+\frac{7}{x+2} (x>0)$の最小値を求めなさい.
(3)$a_1=5,\ a_{n+1}=3a_n-2 (n=1,\ 2,\ 3,\ \cdots)$で定められた数列$\{a_n\}$の一般項を求めなさい.
(4)$\pi$を円周率($3.14159 \cdots$)とするとき,次の無限数列の和$S$を求めなさい.

$S=3.14159\cdots$
$\qquad +0.314159\cdots$
$\qquad\qquad +0.0314159\cdots$
$\qquad\qquad\qquad +0.00314159 \cdots$
$\qquad\qquad\qquad\qquad +0.0003.14159 \cdots$
$\qquad\qquad\qquad\qquad\qquad \cdots\cdots$

(5)$\displaystyle \int_0^1 x \sqrt{1-x} \, dx$を求めなさい.
千歳科学技術大学 私立 千歳科学技術大学 2013年 第4問
関数$\displaystyle y=e^{-\frac{x^2}{2}}$について以下の問いに答えなさい.

(1)$y^\prime$および$y^{\prime\prime}$を求めなさい.
(2)極値を求めなさい.また変曲点の座標も求めなさい.
(3)$\displaystyle y=e^{-\frac{x^2}{2}}$のグラフをかきなさい.
日本福祉大学 私立 日本福祉大学 2013年 第3問
関数$\displaystyle f(x)=\frac{1}{3}x^3+2x^2+ax+\frac{4}{3}$について,以下の問いに答えよ.

(1)$a=3$のとき,$y=f(x)$のグラフを書け.
(2)関数$f(x)$が極値をもつための$a$の範囲を求めよ.
愛知学院大学 私立 愛知学院大学 2013年 第2問
放物線$\displaystyle y=\frac{1}{2}x^2$と,傾きが$a$で点$(1,\ 1)$を通る直線がある.このとき放物線と直線に囲まれた図形の面積$S$の最小値を求めなさい.
愛知学院大学 私立 愛知学院大学 2013年 第3問
円$(x-3)^2+(y-3)^2=9$と,直線$\displaystyle y=\frac{1}{2}x$の$2$つの交点と円上の任意の点によりできる三角形の重心の軌跡を求めなさい.
愛知学院大学 私立 愛知学院大学 2013年 第1問
次の式を簡単にしなさい.

(1)$\sqrt{32}-\sqrt{50}+\sqrt{98}-\sqrt{18}=[ア] \sqrt{[イ]}$

(2)$\displaystyle \frac{\sqrt{2}}{1+\sqrt{2}+\sqrt{5}}+\frac{\sqrt{2}}{1+\sqrt{2}-\sqrt{5}}=[ウ] \sqrt{[エ]}+[オ]$

(3)$\{(9+4 \sqrt{5})^5+(9-4 \sqrt{5})^5\}^2-\{(9+4 \sqrt{5})^5-(9-4 \sqrt{5})^5\}^2=[カ]$
愛知学院大学 私立 愛知学院大学 2013年 第2問
曲線$C:y=x^3-tx$上の点$\mathrm{P}(a,\ a^3-ta) (a<0)$における接線$\ell$が$C$と交わる点を$\mathrm{Q}$とする.

(1)点$\mathrm{Q}$の$x$座標を$a$を用いて表すと$x=[アイ]a$である.
(2)点$\mathrm{Q}$における$C$の接線が直線$\mathrm{PQ}$と直交するとき$([ウ]a^2-t)([エオ]a^2-t)=-1$である.
(3)$(2)$を満たす$a$の値がただ$1$つ決まるとき,$\displaystyle t=\frac{[カ]}{[キ]}$である.
愛知学院大学 私立 愛知学院大学 2013年 第3問
$0 \leqq x<2\pi$,$0 \leqq y<2\pi$とする.

(1)方程式$\sin 2x+\sin x=0$の解は,
\[ x=0,\quad \frac{[ア]}{[イ]} \pi,\quad \pi,\quad \frac{[ウ]}{[エ]} \pi \]
である.ただし$\displaystyle \frac{[ア]}{[イ]}<\frac{[ウ]}{[エ]}$とする.

(2)連立方程式$\sin x+\sin y=1$,$\cos x-\cos y=\sqrt{3}$の解は
\[ x=\frac{[オ]}{[カ]} \pi,\quad y=\frac{[キ]}{[ク]} \pi \]
である.
愛知学院大学 私立 愛知学院大学 2013年 第4問
$xy$平面上に$3$点$\mathrm{A}(-3,\ 0)$,$\mathrm{B}(0,\ 0)$,$\mathrm{C}(c,\ 0) (c>0)$がある.

(1)$\mathrm{PA}:\mathrm{PB}=2:1$となる点$\mathrm{P}$は,点$([ア],\ [イ])$を中心とする半径$[ウ]$の円を描く.
(2)$\mathrm{PA}:\mathrm{PB}:\mathrm{PC}=4:2:1$となるような点$\mathrm{P}$が存在するのは$\displaystyle \frac{[エ]}{[オ]} \leqq c \leqq \frac{[カ]}{[キ]}$のときである.
ノートルダム清心女子大学 私立 ノートルダム清心女子大学 2013年 第1問
以下の問いに答えなさい.

(1)次の$2$次方程式を解きなさい.解の分母は有理化しなさい.
\[ (1+\sqrt{3})x^2+(2+\sqrt{3})x+1=0 \]
(2)$\alpha$と$\beta$は$2$次関数$y=ax^2+bx+c$のグラフと$x$軸の共有点の$x$座標であり,$\alpha<-1$と$0<\beta<1$を満たしているものとする.このとき次の式の符号を求め,その理由も示しなさい.ただし,$a<0$とする.
\[ \nagamaruichi -\frac{b}{2a} \qquad \nagamaruni b \qquad \nagamarusan c \qquad \nagamarushi b^2-4ac \qquad \nagamarugo a-b+c \qquad \nagamaruroku a+b+c \]
(3)高さ$5$メートルの像がある.これと同じ材質を用いて,像と相似形で高さ$10$センチメートルのミニチュアを作るとする.このとき次の問いに答えなさい.ただし,像もミニチュアも均質で,中に空洞はないものとする.

(i) もとの像とこのミニチュアの相似比を,最も簡単な整数の比として求めなさい.
(ii) もとの像と同じ体積の材料から何個のミニチュアを作ることができるか.ただし,材料は余すところなくすべて使えるものとする.
(iii) $(ⅱ)$でできたミニチュアすべての表面積の合計はもとの像の表面積の何倍か.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。