タグ「分数」の検索結果

275ページ目:全4648問中2741問~2750問を表示)
桜美林大学 私立 桜美林大学 2013年 第4問
$0$,$1$,$2$,$3$,$4$の数字が$1$つずつ書かれたカードが$2$枚ずつ合計$10$枚ある.この中から同時に$3$枚のカードを取り出すとき,以下の問に答えなさい.

(1)取り出したカードを並べて$3$桁の自然数をつくるとき,$213$以下となるものは$[ル][レ]$個ある.

(2)取り出したカードの中に$0$のカードが含まれている確率は$\displaystyle \frac{[ロ]}{[ワ][ヲ]}$である.

(3)取り出したカードの数字がいずれも$3$以下である確率は$\displaystyle \frac{[ガ]}{[ギ][グ]}$である.

(4)取り出したカードの数字の最大値が$3$である確率は$\displaystyle \frac{[ゲ]}{[ゴ][ザ]}$である.
大阪工業大学 私立 大阪工業大学 2013年 第1問
次の空所を埋めよ.

(1)$2$次方程式$x^2-16x+4=0$の$2$つの実数解を$\alpha,\ \beta$とすると,$\sqrt{\alpha} \sqrt{\beta}=[ア]$であり,$\displaystyle \frac{1}{\sqrt{\alpha}}+\frac{1}{\sqrt{\beta}}=[イ]$である.
(2)三角関数の合成により$\sin \theta+\sqrt{3} \cos \theta=2 \sin (\theta+[ウ])$と表される.ただし,$0<[ウ]<2\pi$とする.また,$0 \leqq \theta \leqq \pi$のとき,$\sin \theta+\sqrt{3} \cos \theta=2$を満たす$\theta$は,$\theta=[エ]$である.
(3)実数$x,\ y$が$2$つの不等式$x^2+y^2 \leqq 1$,$y \geqq 0$を同時に満たすとき,$y-x$の最小値は$[オ]$であり,最大値は$[カ]$である.
(4)$1$から$15$までの数を$1$つずつ書いた$15$枚のカードの中から,同時に$2$枚のカードを引く.このとき,カードの数がどちらも偶数である確率は$[キ]$であり,$2$枚のカードの数の積が$7$の倍数である確率は$[ク]$である.
大阪工業大学 私立 大阪工業大学 2013年 第2問
$\triangle \mathrm{OAB}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,$|\overrightarrow{a}|=\sqrt{3}$,$\displaystyle |\overrightarrow{b}|=\frac{2}{\sqrt{3}}$,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$とする.さらに,辺$\mathrm{OA}$の中点を$\mathrm{M}$,辺$\mathrm{OB}$の中点を$\mathrm{N}$とし,点$\mathrm{M}$を通り辺$\mathrm{OA}$に垂直な直線と点$\mathrm{N}$を通り辺$\mathrm{OB}$に垂直な直線との交点を$\mathrm{P}$とする.このとき,次の空所を埋めよ.

(1)$\overrightarrow{a} \cdot \overrightarrow{b}=[ア]$である.
(2)$x,\ y$を実数とし,$\overrightarrow{\mathrm{OP}}=x \overrightarrow{a}+y \overrightarrow{b}$とおくと,$\overrightarrow{\mathrm{MP}}=(x-[イ]) \overrightarrow{a}+y \overrightarrow{b}$と表されるので,$\overrightarrow{\mathrm{MP}} \perp \overrightarrow{a}$より$x,\ y$の関係式は$3x+y=[ウ]$である.
また,$\overrightarrow{\mathrm{NP}} \perp \overrightarrow{b}$より,$x,\ y$の関係式は$[エ]=2$である.したがって,$x=[オ]$,$y=[カ]$である.
大阪工業大学 私立 大阪工業大学 2013年 第1問
次の空所を埋めよ.

(1)$2$次方程式$x^2-16x+4=0$の$2$つの実数解を$\alpha,\ \beta$とすると,$\sqrt{\alpha} \sqrt{\beta}=[ア]$であり,$\displaystyle \frac{1}{\sqrt{\alpha}}+\frac{1}{\sqrt{\beta}}=[イ]$である.
(2)三角関数の合成により$\sin \theta+\sqrt{3} \cos \theta=2 \sin (\theta+[ウ])$と表される.ただし,$0<[ウ]<2\pi$とする.また,$0 \leqq \theta \leqq \pi$のとき,$\sin \theta+\sqrt{3} \cos \theta=2$を満たす$\theta$は,$\theta=[エ]$である.
(3)実数$x,\ y$が$2$つの不等式$x^2+y^2 \leqq 1$,$y \geqq 0$を同時に満たすとき,$y-x$の最小値は$[オ]$であり,最大値は$[カ]$である.
(4)$1$から$15$までの数を$1$つずつ書いた$15$枚のカードの中から,同時に$2$枚のカードを引く.このとき,カードの数がどちらも偶数である確率は$[キ]$であり,$2$枚のカードの数の積が$7$の倍数である確率は$[ク]$である.
大阪工業大学 私立 大阪工業大学 2013年 第2問
$\triangle \mathrm{OAB}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,$|\overrightarrow{a}|=\sqrt{3}$,$\displaystyle |\overrightarrow{b}|=\frac{2}{\sqrt{3}}$,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$とする.さらに,辺$\mathrm{OA}$の中点を$\mathrm{M}$,辺$\mathrm{OB}$の中点を$\mathrm{N}$とし,点$\mathrm{M}$を通り辺$\mathrm{OA}$に垂直な直線と点$\mathrm{N}$を通り辺$\mathrm{OB}$に垂直な直線との交点を$\mathrm{P}$とする.このとき,次の空所を埋めよ.

(1)$\overrightarrow{a} \cdot \overrightarrow{b}=[ア]$である.
(2)$x,\ y$を実数とし,$\overrightarrow{\mathrm{OP}}=x \overrightarrow{a}+y \overrightarrow{b}$とおくと,$\overrightarrow{\mathrm{MP}}=(x-[イ]) \overrightarrow{a}+y \overrightarrow{b}$と表されるので,$\overrightarrow{\mathrm{MP}} \perp \overrightarrow{a}$より$x,\ y$の関係式は$3x+y=[ウ]$である.
また,$\overrightarrow{\mathrm{NP}} \perp \overrightarrow{b}$より,$x,\ y$の関係式は$[エ]=2$である.したがって,$x=[オ]$,$y=[カ]$である.
産業医科大学 私立 産業医科大学 2013年 第1問
空欄にあてはまる適切な数,式,記号などを記入しなさい.

(1)$100$円,$50$円,$10$円の硬貨がそれぞれたくさんあるとする.ある品物を買うのに$2300$円かかるとき,このお金による支払い方の総数は$[ ]$である.
(2)整式$P(x)$を$x^2-4x+3$で割ったときの余りは$x+1$であり,$x^2-3x+2$で割ったときの余りは$3x-1$である.$P(x)$を$x^3-6x^2+11x-6$で割ったときの余りは$[ ]$である.
(3)数列の極限$\displaystyle \lim_{n \to \infty} \frac{\sum_{k=1}^{2n} (k+n)^2}{\sum_{k=1}^{2n} k^2}$の値は$[ ]$である.
(4)$\sqrt{x}+\sqrt{y}=1$で表される座標平面上の曲線を$C$とする.曲線$C$上の$x$座標が$s (0<s<1)$である点における接線を$\ell$とする.接線$\ell$と曲線$C$および$x$軸,$y$軸とで囲まれた部分を,$x$軸のまわりに$1$回転してできる回転体の体積の最小値は$[ ]$である.また,そのときの$s$の値は$[ ]$である.
(5)原点を$\mathrm{O}$とする座標平面上の$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ 1)$を結ぶ線分上に点$\mathrm{P}$がある.$\theta=\angle \mathrm{AOP}$とし,線分$\mathrm{OP}$の長さを$r$とするとき,$r$は$\theta$の関数として$r=f(\theta)$と表せる.このとき定積分$\displaystyle \int_0^{\frac{\pi}{2}} f(\theta) \, d\theta$の値は$[ ]$であり,$\displaystyle \int_0^{\frac{\pi}{2}} f(\theta)^2 \cos \theta \, d\theta$の値は$[ ]$である.
(6)$\mathrm{A}$が$1$枚のカードを,$\mathrm{B}$が$4$枚のカードを持っている.表が出る確率と裏が出る確率がそれぞれ$\displaystyle \frac{1}{2}$の偏りのないコインを投げて,表が出れば$\mathrm{A}$は$\mathrm{B}$からカードを$1$枚もらう.裏が出れば$\mathrm{A}$は$\mathrm{B}$にカードを$1$枚わたす.ただし,手もとにカードがなければわたさなくてよい.この試行を$4$回くり返した後,$\mathrm{A}$の手もとに残るカードの枚数の期待値は$[ ]$である.
成城大学 私立 成城大学 2013年 第2問
$\triangle \mathrm{ABC}$の面積を$S$,$\angle \mathrm{BAC}=\alpha$とし,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$とする.さらに,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$を$1$辺とする正三角形の面積をそれぞれ$S_A,\ S_B,\ S_C$とする.ただし,$\alpha \neq {90}^\circ$とする.

(1)$a$を用いて$S_A$を表せ.
(2)次の等式が成り立つことを証明せよ.
\[ S_A=S_B+S_C-\frac{\sqrt{3}}{\tan \alpha}S \]
東京女子大学 私立 東京女子大学 2013年 第1問
座標平面における放物線$\displaystyle C_1:y=\frac{1}{2}x^2+\frac{1}{2}$,および円$C_2:x^2+y^2=2$について,以下の設問に答えよ.

(1)$C_1$と$C_2$の交点を$\mathrm{P}$,$\mathrm{Q}$とするとき,$\angle \mathrm{POQ}$を求めよ.ただし,$\mathrm{O}$は座標平面における原点をあらわす.
(2)$C_1$と$C_2$で囲まれた部分の面積を求めよ.
東京女子大学 私立 東京女子大学 2013年 第2問
座標平面において$\displaystyle y=\frac{3}{4}x$,$0 \leqq x \leqq 100$で定まる線分を$L$とする.

(1)$L$上の点で$x$座標,$y$座標がともに整数であるものは何個あるか.
(2)整数$a,\ b$を用いて$a-1 \leqq x \leqq a$,$b-1 \leqq y \leqq b$で表される正方形のうち,$L$と共有点を持つものは何個あるか.
東京女子大学 私立 東京女子大学 2013年 第4問
座標平面において点$\mathrm{C}(1,\ 1)$を中心とする半径$1$の円と曲線$\displaystyle y=\frac{1}{x}$の$2$つの交点を$\mathrm{A}$,$\mathrm{B}$とし,その$x$座標をそれぞれ$\alpha,\ \beta$とする.ただし$0<\alpha<\beta$とする.

(1)$\alpha+\beta$および$\alpha \beta$を求めよ.
(2)$\cos \angle \mathrm{ACB}$を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。