タグ「分数」の検索結果

271ページ目:全4648問中2701問~2710問を表示)
安田女子大学 私立 安田女子大学 2013年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{2+\sqrt{2}}{\sqrt{2}+1}$の分母を有理化して簡単にせよ.
(2)$x^3+x^2y-x^2z-xy^2-y^3+y^2z$を因数分解せよ.
(3)$1$冊$180$円のノートと$1$本$80$円の鉛筆をいくつか買い,代金の合計を$900$円以下にしたい.買い方は何通りあるか求めよ.ただし,ノートは$2$冊以上,鉛筆は$1$本以上買うものとする.
(4)半径$2$の円に内接する正六角形$P$と外接する正六角形$Q$がある.$P$と$Q$の面積比を求めよ.
安田女子大学 私立 安田女子大学 2013年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{2+\sqrt{2}}{\sqrt{2}+1}$の分母を有理化して簡単にせよ.
(2)$x^3+x^2y-x^2z-xy^2-y^3+y^2z$を因数分解せよ.
(3)$1$冊$180$円のノートと$1$本$80$円の鉛筆をいくつか買い,代金の合計を$900$円以下にしたい.買い方は何通りあるか求めよ.ただし,ノートは$2$冊以上,鉛筆は$1$本以上買うものとする.
(4)$k$を実数とする$2$次方程式$x^2+x+k=0$の解が$\sin \theta$,$\cos \theta$で表されるとき,$k,\ \theta$の値を求めよ.ただし,$0 \leqq \theta<2\pi$とする.
(5)$3 \overrightarrow{a}+\overrightarrow{b}=(1,\ 0)$,$\overrightarrow{a}-2 \overrightarrow{b}=(0,\ 1)$であるとき,$(3,\ -1)$を$\overrightarrow{a}$および$\overrightarrow{b}$を用いて表せ.
吉備国際大学 私立 吉備国際大学 2013年 第1問
次の問いに答えよ.

(1)$x^2+ax+2x+3a-3$を因数分解せよ.
(2)男$4$人,女$2$人が一列に並ぶとき,女$2$人が隣接する並び方は$[ ]$通り.
(3)$x^2-11x+1>0$を解け.
(4)$\displaystyle \tan \theta=\frac{1}{2}$のとき,$\sin \theta=[ ]$である.
(5)循環小数$1. \dot{2} \dot{1}$を分数で表せ.
吉備国際大学 私立 吉備国際大学 2013年 第3問
赤玉と白玉が合計$16$個入っている袋がある.この袋から同時に$2$個の玉を取り出す試行を行う.

(1)$2$個とも赤である確率が$\displaystyle \frac{11}{20}$のとき,赤玉の個数を求めよ.
(2)赤玉が$(1)$で求めた個数のとき,$2$個とも白玉が取り出される確率を求めよ.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2013年 第1問
$e$を自然対数の底,$b$を実数として,数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$が条件$①$および$②$を満たしているとき,次の問いに答えなさい.

$\displaystyle a_1=\frac{e-e^2+b}{1-e} \qquad \cdots\cdots①$
$a_{n+1}=ea_n+b \qquad\quad\!\;\!\!\, \cdots\cdots②$

(1)$b=11$のとき,$a_n$を$n$の式で表すと,$a_n=[$1$]$となる.また,
\[ \sum_{k=1}^n \log_e \left( a_k+\frac{11}{e-1} \right)=[$2$] \]
となる.
(2)$b=e^{11}$のとき,$\displaystyle \sum_{k=1}^n a_k$の値は$n=[$3$]$のとき最小となる.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2013年 第3問
$\mathrm{O}$を中心とする半径$1$の円周上に相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がある.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおき,$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \neq \overrightarrow{\mathrm{0}}$とする.線分$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の中点を,それぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とし,$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$,$\overrightarrow{\mathrm{OQ}}=\overrightarrow{q}$,$\overrightarrow{\mathrm{OR}}=\overrightarrow{r}$とおく.

このとき,以下の$[$1$]$~$[$6$]$について適切な値を,$[イ]$には適切な式を解答欄に答えなさい.また,$[ア]$,$[ウ]$には下部の選択肢からもっともふさわしいものを選択して,解答欄に記入しなさい.
ベクトル$\displaystyle \overrightarrow{d}=\frac{1}{2}(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c})$とすると,
\[ |\overrightarrow{d}-\overrightarrow{p}|=|\overrightarrow{d}-\overrightarrow{q}|=|\overrightarrow{d}-\overrightarrow{r}|=[$1$] \]
となり,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$によって定まる点$\mathrm{D}$は$\triangle \mathrm{PQR}$の$[ア]$となることがわかる.
いま,線分$\mathrm{AB}$の長さを$1$,線分$\mathrm{AC}$の長さを$\sqrt{3}$とし,$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$は,どの$2$つも平行ではないとする.このとき,線分$\mathrm{BC}$の長さは$[$2$]$であり,$\overrightarrow{a} \cdot \overrightarrow{c}=[$3$]$である.また,$\overrightarrow{b}$を$\overrightarrow{a}$と$\overrightarrow{c}$で表すと,$\overrightarrow{b}=[イ]$となる.
また,$\triangle \mathrm{PQR}$について,$\angle \mathrm{QPR}$の二等分線と辺$\mathrm{QR}$の交点を$\mathrm{S}$とおき,$\overrightarrow{\mathrm{PS}}$を$\overrightarrow{a}$と$\overrightarrow{c}$で表すと,
\[ \overrightarrow{\mathrm{PS}}=[$4$] \overrightarrow{a}+[$5$] \overrightarrow{c} \]
とかける.同様にして,$\angle \mathrm{PQR}$の二等分線と辺$\mathrm{PR}$の交点を$\mathrm{T}$とおく.線分$\mathrm{PS}$と線分$\mathrm{QT}$の交点を$\mathrm{U}$とおくと,$\mathrm{U}$は$\triangle \mathrm{PQR}$の$[ウ]$となり,
\[ \overrightarrow{\mathrm{OU}}=[$6$] \overrightarrow{b} \]
となることがわかる.
\begin{screen}
選択肢: \quad 重心, \quad 内心, \quad 外心
\end{screen}
神戸薬科大学 私立 神戸薬科大学 2013年 第4問
$xyz \neq 0$となる実数$x,\ y,\ z$に対して$2^x=3^y=\sqrt[3]{6^z}$であるとき,$x$を$z$で表すと$x=[ ]$となり,$y$を$z$で表すと$y=[ ]$となる.さらに,$\displaystyle \frac{1}{x}+\frac{1}{y}=z^2$を満たすとき$z=[ ]$である.
大阪歯科大学 私立 大阪歯科大学 2013年 第1問
以下の$[ ]$に入る適切な数値を解答欄に記せ.

(1)$\displaystyle a=\frac{1}{2-\sqrt{3}},\ b=\frac{1}{3-\sqrt{2}},\ c=\frac{1}{\sqrt{2}-1}$のとき,数式
\[ a-\left\{ \frac{2b-c}{3}-\left( \frac{1}{6} a+\frac{2}{3}b-c \right) -\frac{1}{3} a \right\}-3 \left( \frac{1}{2}a-\frac{c}{3} \right) \]
の値は$[$\mathrm{a]$}$となる.
(2)ある宝石の価格は,その重量の$2$乗に比例するものとする.いま,価格$50$万円のその宝石を誤って$2$つに割ってしまった.$2$つのかけらの重量の比が$2:3$であるとき,損害は$[$\mathrm{b]$}$万円である.
(3)赤玉$3$個,白玉$2$個,黒玉$1$個が入った箱から玉を$1$個取り出して色を確認したら元に戻す操作を$5$回繰り返す.このとき,白玉が$2$回以上取り出される確率は$[$\mathrm{c]$}$である.
(4)$x^3+ax^2-10x-b=0$が$x=1,\ 2$を解にもつとき,もう一つの解は$x=[$\mathrm{d]$}$である.
大同大学 私立 大同大学 2013年 第3問
$\displaystyle f(x)=\frac{\cos 5x}{\cos x} \left( 0<x<\frac{\pi}{2} \right)$とする.

(1)$\cos 4x=a \cos^2 2x+b$をみたす定数$a,\ b$の値を求めよ.
(2)$\cos 4x=l \cos^4 x+m \cos^2 x+n$をみたす定数$l,\ m,\ n$の値を求めよ.
(3)$\sin 4x \sin x=(p \cos^4 x+q \cos^2 x+r) \cos x$をみたす定数$p,\ q,\ r$の値を求めよ.
(4)$f(x)$の最小値を求めよ.
大同大学 私立 大同大学 2013年 第5問
$\displaystyle f(x)=\frac{x \log \left( x^2+\displaystyle\frac{3}{4} \right)}{x^2+\displaystyle\frac{3}{4}}$とする.

(1)$f(x)=0$をみたす$x$の値を求めよ.
(2)$\displaystyle t=\log \left( x^2+\displaystyle\frac{3}{4} \right)$を微分せよ.
(3)$(2)$を用いて置換積分することにより,不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(4)曲線$y=f(x)$と$x$軸で囲まれる$2$つの部分の面積の和を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。