タグ「分数」の検索結果

266ページ目:全4648問中2651問~2660問を表示)
北海道医療大学 私立 北海道医療大学 2013年 第1問
以下の問に答えよ.

(1)関数$y=2x^2-3x+2 (-1 \leqq x \leqq 2)$の最大値を$A$,最小値を$B$とするとき,$A,\ B$の値を求めよ.
(2)不等式$\displaystyle |x-1|<-\frac{1}{4}x+\frac{3}{2}$の解は$A<x<B$となる.$A,\ B$の値を求めよ.
(3)座標平面上の$3$点$\mathrm{A}(4,\ 5)$,$\mathrm{B}(2,\ 1)$,$\mathrm{C}(6,\ 2)$を頂点とする$\triangle \mathrm{ABC}$において,頂点$\mathrm{A}$から辺$\mathrm{BC}$に下した垂線を$\mathrm{AH}$とするとき,$\triangle \mathrm{ABH}$の面積を求めよ.
(4)$2$つの放物線$\displaystyle y=\frac{1}{2}x^2-2x+\frac{5}{2}$と$\displaystyle y=-\frac{1}{2}x^2+2kx-\frac{3}{2}k$が共有点を持たないような定数$k$の値の範囲は,$A<k<B$となる.$A,\ B$の値を求めよ.

(5)$\displaystyle \frac{\sqrt{17}+3}{\sqrt{17}-3}$の小数部分の値を求めよ.
北海道医療大学 私立 北海道医療大学 2013年 第1問
以下の問に答えよ.

(1)関数$y=2x^2-3x+2 (-1 \leqq x \leqq 2)$の最大値を$A$,最小値を$B$とするとき,$A,\ B$の値を求めよ.
(2)不等式$\displaystyle |x-1|<-\frac{1}{4}x+\frac{3}{2}$の解は$A<x<B$となる.$A,\ B$の値を求めよ.
(3)座標平面上の$3$点$\mathrm{A}(4,\ 5)$,$\mathrm{B}(2,\ 1)$,$\mathrm{C}(6,\ 2)$を頂点とする$\triangle \mathrm{ABC}$において,頂点$\mathrm{A}$から辺$\mathrm{BC}$に下した垂線を$\mathrm{AH}$とするとき,$\triangle \mathrm{ABH}$の面積を求めよ.
(4)$2$つの放物線$\displaystyle y=\frac{1}{2}x^2-2x+\frac{5}{2}$と$\displaystyle y=-\frac{1}{2}x^2+2kx-\frac{3}{2}k$が共有点を持たないような定数$k$の値の範囲は,$A<k<B$となる.$A,\ B$の値を求めよ.

(5)$\displaystyle \frac{\sqrt{17}+3}{\sqrt{17}-3}$の小数部分の値を求めよ.
広島国際学院大学 私立 広島国際学院大学 2013年 第1問
次の問いに答えなさい.

(1)$ab^2c^2+a^2bc+bc+a$を因数分解しなさい.

(2)$\displaystyle \frac{1}{1+\sqrt{2}+\sqrt{3}}-\frac{1}{1+\sqrt{2}-\sqrt{3}}$を計算しなさい.
広島国際学院大学 私立 広島国際学院大学 2013年 第2問
$\mathrm{AB}:\mathrm{BC}:\mathrm{CA}=1:1:\sqrt{3}$の$\triangle \mathrm{ABC}$を考える.

(1)$\angle \mathrm{A}$を求めなさい.
(2)$\triangle \mathrm{ABC}$の面積が$\displaystyle \frac{\sqrt{3}}{2}$であるとき,辺$\mathrm{CA}$の長さを求めなさい.
広島国際学院大学 私立 広島国際学院大学 2013年 第4問
次の問いに答えなさい.

(1)$216^{\frac{1}{3}}$の値を求めなさい.
(2)$\displaystyle \log_3 3 \sqrt{5}+0.5 \log_3 \frac{9}{5}$を簡単にしなさい.
(3)関数$y=3 x^3+4x^2+5$を微分しなさい.
(4)次の不定積分を求めなさい.
\[ \int (-x^2+4x+3) \, dx \]
千葉工業大学 私立 千葉工業大学 2013年 第3問
次の各問に答えよ.

(1)数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$が$\displaystyle a_1=\frac{1}{2}$,$\displaystyle a_{n+1}=\frac{3a_n}{2n \cdot a_n+3} (n=1,\ 2,\ 3,\ \cdots)$で定められている.$\displaystyle b_n=\frac{1}{a_n} (n=1,\ 2,\ 3,\ \cdots)$とおくと,$b_1=[ア]$,$\displaystyle b_{n+1}-b_n=\frac{[イ]}{[ウ]}n$が成り立つ.$\displaystyle a_{10}=\frac{[エ]}{[オカ]}$であり,$\displaystyle a_n<\frac{1}{50}$をみたす最小の$n$は$[キク]$である.
(2)平行四辺形$\mathrm{OABC}$において,辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{D}$とし,線分$\mathrm{CD}$を$3:4$に内分する点を$\mathrm{E}$とするとき,
\[ \overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{OA}}+\frac{[ケ]}{[コ]} \overrightarrow{\mathrm{OC}},\quad \overrightarrow{\mathrm{OE}}=\frac{[サ]}{[シ]} \overrightarrow{\mathrm{OA}}+\frac{[ス]}{[セ]} \overrightarrow{\mathrm{OC}} \]
である.直線$\mathrm{OE}$と辺$\mathrm{BC}$との交点を$\mathrm{F}$とするとき,
\[ \overrightarrow{\mathrm{OF}}=\frac{[ソ]}{[タ]} \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OC}} \]
であり,三角形$\mathrm{CEF}$の面積は平行四辺形$\mathrm{OABC}$の面積の$\displaystyle \frac{[チ]}{[ツテ]}$倍である.
北星学園大学 私立 北星学園大学 2013年 第4問
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人がいる.各人がある試験に合格する確率はそれぞれ$\displaystyle \frac{1}{4},\ \frac{4}{5},\ \frac{1}{2}$であるという.以下の問に答えよ.

(1)$3$人とも試験に合格する確率を求めよ.
(2)少なくとも$2$人が試験に合格する確率を求めよ.
千葉工業大学 私立 千葉工業大学 2013年 第4問
$\mathrm{O}$を原点とする$xy$平面上に,放物線$\displaystyle C:y=\frac{1}{4}x^2$がある.点$\mathrm{A}(2,\ 8)$を通る直線$\ell:y=t(x-2)+8$(ただし,$t$は定数)と$C$との$2$つの交点を結ぶ線分の中点を$\mathrm{M}(X,\ Y)$とするとき,次の問いに答えよ.

(1)$C$と$\ell$との$2$つの交点の$x$座標を$\alpha,\ \beta$とすると,$\alpha+\beta=[ア] t$である.$X,\ Y$を$t$を用いて表すと,$X=[イ] t$,$Y=[ウ] t^2-[エ] t+[オ]$である.
(2)$\mathrm{M}$が直線$\mathrm{OA}$上の点であるような$t$の値は小さい方から順に$[カ]$,$[キ]$である.
(3)$t$が$[カ]$から$[キ]$まで変化するときの$\mathrm{M}$の軌跡は,放物線
\[ D:y=\frac{[ク]}{[ケ]}x^2-x+[コ] \]
の$[サ] \leqq x \leqq [シ]$の部分である.
(4)$[カ] \leqq t \leqq [キ]$において,直線$\mathrm{OM}$が$D$に接するとき,$X=[ス]$である.また,$t$が$[カ]$から$[キ]$まで変化するとき,線分$\mathrm{OM}$が通過する部分の面積は$\displaystyle \frac{[セソ]}{[タ]}$である.
沖縄国際大学 私立 沖縄国際大学 2013年 第1問
以下の各問いに答えなさい.

(1)関数$\displaystyle y=-\frac{1}{2}x^2-3x-\frac{1}{2}$のグラフの頂点の座標を求めなさい.
(2)$x$軸と点$(-3,\ 0)$で接し,点$(-2,\ -2)$を通る$2$次関数を求めなさい.
(3)$(2)$で求めた$2$次関数のグラフを$x$軸方向に$1$,$y$軸方向に$-5$だけ平行移動するとき,$2$次関数$y=ax^2+bx+c$のグラフになるとする.この定数$a,\ b,\ c$の値を求めなさい.
(4)$a$を正の定数とする.$2$次関数$y=ax^2-4ax+b$は,区間$0 \leqq x \leqq 2$における最大値が$-1$,最小値が$-5$とする.このとき,定数$a,\ b$の値を求めなさい.
沖縄国際大学 私立 沖縄国際大学 2013年 第2問
以下の各問いに答えなさい.

(1)$\displaystyle 3(x+3)^2-1=\frac{x+3}{2}$を解きなさい.
(2)$\left\{ \begin{array}{l}
x^2-2x>3 \\
|x-4|<2
\end{array} \right.$を解きなさい.
(3)$\displaystyle -x+\frac{2}{\sqrt{x^2+2}-x}$を簡単な式にしなさい.

(4)$\displaystyle \frac{3x-17}{(x+2)(x-3)}=\frac{a}{x+2}+\frac{b}{x-3}$を満たす$a$と$b$の値を求めなさい.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。