タグ「分数」の検索結果

262ページ目:全4648問中2611問~2620問を表示)
日本女子大学 私立 日本女子大学 2013年 第4問
曲線$\displaystyle y=\cos x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と$x$軸,$y$軸で囲まれた図形の面積が,$2$つの曲線$y=a \sin x$,$y=b \sin x (0<b<a)$によって$3$等分されるとき,定数$a,\ b$の値を求めよ.
広島修道大学 私立 広島修道大学 2013年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)$x=\sqrt{7}+3$,$y=\sqrt{7}-3$のとき,$xy=[$1$]$,$x^2+y^2=[$2$]$,$\displaystyle \frac{1}{x}+\frac{1}{y}=[$3$]$である.
(2)$(x+9)^2-(x+9)-12$を因数分解すると$[$4$]$となる.
(3)連立不等式
\setstretch{2}
\[ \left\{ \begin{array}{l}
2x-3 \leqq 4x+6 \\
\displaystyle 3x+2 \leqq \frac{5x+3}{2}
\end{array} \right. \]
\setstretch{1.3}
の解は$[$5$]$である.
(4)方程式$2x^2-kx+3=0$が実数解をもたないような定数$k$の値の範囲は$[$6$]$である.
(5)$a,\ b$を定数とし,$a>0$,$b>0$とする.関数$y=ax^2$のグラフに,$y$軸上の点$(0,\ -b)$から接線を引く.$2$つの接線のうち,傾きが正であるものを$\ell$とし,接線$\ell$と放物線$y=ax^2$の接点を点$\mathrm{P}$とする.このとき,接線$\ell$の方程式と点$\mathrm{P}$の座標を$a$と$b$を用いて表すと,$\ell$の方程式は$[$7$]$,$\mathrm{P}$の座標は$[$8$]$となる.
(6)$2$次関数$y=f(x)$のグラフ$C$は,点$(0,\ 5)$を通り,$C$上の点$(-1,\ f(-1))$における接線は,$y=-11x+3$である.このとき,$f(x)=[$9$]$である.また,放物線$C$の$x \leqq 2$の部分と$x$軸および直線$x=2$で囲まれた部分の面積は$[$10$]$である.
(7)方程式$\displaystyle 5^{2x-3}-25^{x-1}+125^{\frac{2x}{3}}=121$の解は$[$11$]$である.
東北医科薬科大学 私立 東北医科薬科大学 2013年 第3問
さいころを$3$回投げて$1$回目の数を$a$,$2$回目の数を$b$,$3$回目の数を$c$とおく.このとき,次の問に答えなさい.

(1)$a+b+c=6$となる確率は$\displaystyle \frac{[ア]}{[イウエ]}$である.

(2)$abc \geqq 125$となる確率は$\displaystyle \frac{[オカ]}{[キクケ]}$である.

(3)$\displaystyle \frac{b}{a}$の期待値は$\displaystyle \frac{[コサシ]}{[スセソ]}$である.

(4)$\displaystyle \frac{bc}{a}$が整数となる確率は$\displaystyle \frac{[タチ]}{[ツテ]}$である.
北海道薬科大学 私立 北海道薬科大学 2013年 第2問
次の各設問に答えよ.

(1)連立方程式

$\log_5 |x-7|+\log_5(20-y)=2$
$\log_{\frac{1}{3}}(5x+y-32)=-1$

を満たす実数$x,\ y$は,$x=[ア]$,$y=[イウ]$である.
(2)数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$の初項から第$n$項までの和が$37n^2+15n$のとき一般項は
\[ a_n=[エオ](n-1)+[カキ] \]
であり,$a_n$が$2000$より大きくなるのは第$[クケ]$項からである.
北海道薬科大学 私立 北海道薬科大学 2013年 第4問
関数$\displaystyle f(x)=2 \cos^3 x-8 \sin x \cos x-2 \sin^3 x+6 \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$について,次の設問に答えよ.

(1)$\cos x-\sin x$の最小値は$[アイ]$であり,最大値は$[ウ]$である.
(2)$f(x)$を$t=\cos x-\sin x$で表した関数を$g(t)$とおくと
\[ g(t)=[エ]t^3+[オ]t^2+[カ]t+[キ] \]
である.
(3)$f(x)$の最大値は$[ク]$,最小値は$\displaystyle \frac{[ケコ]}{[サシ]}$である.
東北医科薬科大学 私立 東北医科薬科大学 2013年 第2問
$2$直線$x \cos \theta+y \sin \theta=6$,$x \sin \theta-y \cos \theta=8$の交点を$\mathrm{P}(\theta)$とおく.このとき,次の問に答えなさい.

(1)$\displaystyle \theta=\frac{\pi}{4}$のとき点$\displaystyle \mathrm{P} \left( \frac{\pi}{4} \right)$を$\mathrm{A}$とおくと$\mathrm{A}$の座標は$([ア] \sqrt{[イ]},\ [ウ] \sqrt{[エ]})$である.
(2)点$\mathrm{P}(\theta)$の座標$(x,\ y)$を$\theta$で表すと$x=[オ] \cos \theta+[カ] \sin \theta$,$y=[キ] \sin \theta-[ク] \cos \theta$である.
(3)$\theta$が$\displaystyle \frac{\pi}{4} \leqq \theta \leqq \frac{3\pi}{4}$を動くとき,点$\mathrm{P}(\theta)$の軌跡は中心$([ケ],\ [コ])$,半径$[サシ]$の円の一部(円弧)を動き,その円弧の長さは$[ス] \pi$である.
(4)点$\displaystyle \mathrm{P} \left( \frac{3\pi}{4} \right)$を$\mathrm{B}$,点$\mathrm{P}(\theta)$を$\mathrm{P}$とおく.このときベクトル$\overrightarrow{\mathrm{PA}}$とベクトル$\overrightarrow{\mathrm{PB}}$の内積は
\[ \overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}=[セソタ]([チ]-\sqrt{[ツ]} \sin \theta) \]
である.また,$\theta$が$\displaystyle \frac{\pi}{4} \leqq \theta \leqq \frac{3\pi}{4}$を動くとき,この内積が最小となる点$\mathrm{P}$の座標は$([テ],\ [ト])$である.
北海道薬科大学 私立 北海道薬科大学 2013年 第1問
次の各設問に答えよ.

(1)$a,\ b$が有理数である$x^2+ax+b=0$の一つの解が$2+\sqrt{3}$であるとき方程式
\[ ax^2-7x+2b=0 \]
の解は$\displaystyle x=[アイ],\ \frac{[ウ]}{[エ]}$である.
(2)$x$を実数とすると$\displaystyle x^2+\frac{100}{x^2+1}$の最小値は$[オカ]$であり,そのときの$x$の値は$[キク],\ [ケ]$である.
(3)$\mathrm{RISUKU}$の$6$文字をバラバラにして一列に並べるとき,$\mathrm{KUSURI}$という文字になる確率は$\displaystyle \frac{[コ]}{[サシス]}$である.
(4)$\displaystyle \int_{-3}^3 (x+1) |x-2| \, dx$の値は$\displaystyle \frac{[セソ]}{[タ]}$である.
神奈川大学 私立 神奈川大学 2013年 第3問
曲線$C:y=x^3$上の点$\mathrm{P}(t,\ t^3)$における接線を$\ell$とする.$\ell$の$\mathrm{P}$とは異なる$C$との交点を$\mathrm{Q}$とし,$C$と$\ell$とで囲まれた部分を$S$とする.このとき,次の問いに答えよ.ただし,$t>0$とする.

(1)接線$\ell$の方程式と,点$\mathrm{Q}$の座標を求めよ.
(2)原点$\mathrm{O}$と$2$点$\mathrm{P}$,$\mathrm{Q}$の中点を通る直線を$m$とする.$m$の方程式を求めよ.
(3)$(2)$の直線$m$により$S$は$2$つの部分に分けられる.$x$軸で$x>0$の一部を含む部分の面積を$s_1$とし,もう一方の面積を$s_2$とする.このとき$\displaystyle \frac{s_1}{s_2}$を求めよ.
神奈川大学 私立 神奈川大学 2013年 第1問
次の空欄を適当に補え.

(1)$x$が$x^2+x+1=0$を満たすとする.このとき$2x^4-x^3-2x^2-4x+2$の値は$[$(\mathrm{a])$}$である.
(2)方程式$3^{2x+1}+2^3 \cdot 3^x-3=0$を解くと$x=[$(\mathrm{b])$}$である.
(3)$2$つの単位ベクトル$\overrightarrow{a}$,$\overrightarrow{b}$に対して,$2 \overrightarrow{a}+3 \overrightarrow{b}$の大きさが$\sqrt{7}$のとき,$\overrightarrow{a}$と$\overrightarrow{b}$のなす角は$[$(\mathrm{c])$}$である.
(4)$t>0$とする.$3$次関数$y=x^3-3x^2-9x+t$のグラフと$x$軸との共有点がただ$1$つのとき,定数$t$の値の範囲は$[$(\mathrm{d])$}$である.
(5)$\mathrm{A}$を含む男子$4$人と$\mathrm{B}$を含む女子$5$人が$1$列に並ぶ.このとき,$\mathrm{A}$と$\mathrm{B}$が隣り合う確率は$[$(\mathrm{e])$}$である.また,男子が隣り合わない確率は$[$(\mathrm{f])$}$である.
(6)関数$\displaystyle f(x)=\frac{1}{2}x^2-3 \log (x+2)$の最小値は$[$(\mathrm{g])$}$である.
神奈川大学 私立 神奈川大学 2013年 第2問
$n$を$3$以上の自然数とする.平面上の点$\mathrm{O}$を中心とする半径$1$の円に内接する正$n$角形の面積を$a_n$,外接する正$n$角形の面積を$b_n$とする.このとき,次の問いに答えよ.

(1)$a_n$を求めよ.
(2)$b_n$を求めよ.

(3)$\displaystyle \frac{b_n}{a_n}<\frac{4}{3}$となる最小の$n$を求めよ.


\mon[補足:] 円に内接する正$n$角形とは,円周を$n$等分して隣り合う点を線分で結んでできる正$n$角形をいう.円に外接する正$n$角形とは,円周を$n$等分した各点において円の接線をひき,隣り合う点における$2$つの接線の交点を頂点とする正$n$角形をいう.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。