タグ「分数」の検索結果

261ページ目:全4648問中2601問~2610問を表示)
広島修道大学 私立 広島修道大学 2013年 第3問
$\triangle \mathrm{ABC}$において,$\mathrm{BC}=a$,$\mathrm{CA}=b$,$\mathrm{AB}=c$とする.$\angle \mathrm{A}$の二等分線が辺$\mathrm{BC}$と交わる点を$\mathrm{D}$とし,$\theta=\angle \mathrm{BAD}$とするとき,次の問に答えよ.

(1)$\cos \theta$の値を$a,\ b,\ c$の式で表せ.

(2)$\displaystyle \mathrm{AD}=\frac{2bc}{b+c} \cos \theta$であることを示せ.

(3)$a=3,\ b=4,\ c=2$のとき,線分$\mathrm{AD}$の長さを求めよ.
広島修道大学 私立 広島修道大学 2013年 第3問
$\triangle \mathrm{ABC}$において,$\mathrm{BC}=a$,$\mathrm{CA}=b$,$\mathrm{AB}=c$とする.$\angle \mathrm{A}$の二等分線が辺$\mathrm{BC}$と交わる点を$\mathrm{D}$とし,$\theta=\angle \mathrm{BAD}$とするとき,次の問に答えよ.

(1)$\cos \theta$の値を$a,\ b,\ c$の式で表せ.

(2)$\displaystyle \mathrm{AD}=\frac{2bc}{b+c} \cos \theta$であることを示せ.

(3)$a=3,\ b=4,\ c=2$のとき,線分$\mathrm{AD}$の長さを求めよ.
金沢工業大学 私立 金沢工業大学 2013年 第2問
次の問いに答えよ.

(1)角度$\theta$が$\displaystyle \frac{\pi}{2}<\theta<\pi$であって$\displaystyle \sin \theta+\cos \theta=-\frac{1}{5}$を満たすとき,
\[ \sum_{n=1}^\infty \sin^n \theta=\frac{[シ]}{[ス]},\quad \sum_{n=1}^\infty \cos^n \theta=\frac{[セ][ソ]}{[タ]} \]
である.
(2)初項$7$,公差$9$の等差数列$\{a_n\}$について,
\[ S_n=\frac{1}{a_1a_2}+\frac{1}{a_2a_3}+\frac{1}{a_3a_4}+\cdots +\frac{1}{a_na_{n+1}} \quad (n=1,\ 2,\ 3,\ \cdots) \]
とすると,$\displaystyle S_n=\frac{1}{[チ]} \left( \frac{1}{[ツ]}-\frac{1}{[テ]n+[ト]} \right)$であって,$\displaystyle \lim_{n \to \infty}S_n=\frac{1}{[ナ][ニ]}$である.
金沢工業大学 私立 金沢工業大学 2013年 第5問
行列$\displaystyle A=\frac{1}{2} \left( \begin{array}{cc}
1 & -\sqrt{3} \\
\sqrt{3} & 1
\end{array} \right)$を考える.また,$E$を単位行列とする.

(1)$A=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right) (0 \leqq \theta<2\pi)$と表すと,$\displaystyle \theta=\frac{[ア]}{[イ]}$である.
(2)$E+A+A^2=\left( \begin{array}{cc}
[ウ] & -\sqrt{[エ]} \\
\sqrt{[オ]} & [カ]
\end{array} \right)$,$A^3=\left( \begin{array}{cc}
[キ][ク] & [ケ] \\
[コ] & [サ][シ]
\end{array} \right)$,$E+A+A^2+A^3+A^4+A^5=\left( \begin{array}{cc}
[ス] & [セ] \\
[ソ] & [タ]
\end{array} \right)$である.
(3)$E+A+A^2+A^3+\cdots +A^{20}=\left( \begin{array}{cc}
[チ] & -\sqrt{[ツ]} \\
\sqrt{[テ]} & [ト]
\end{array} \right)$である.
金沢工業大学 私立 金沢工業大学 2013年 第6問
座標平面において,媒介変数$t$の範囲が$0 \leqq t \leqq \pi$であるサイクロイド
\[ x=t-\sin t,\quad y=1-\cos t \]
を$C$とする.

(1)曲線$C$上で$y$座標が最大になる点を$\mathrm{A}$とすると,$\mathrm{A}$の座標は$([ア],\ [イ])$である.
(2)直線$y=x+k$がこの曲線$C$の$0<t \leqq \pi$の部分に接するのは$\displaystyle t=\frac{\pi}{[ウ]}$のときであり,その接点の座標は$\displaystyle \left( \frac{\pi}{[エ]}-[オ],\ [カ] \right)$である.このとき,$\displaystyle k=[キ]-\frac{\pi}{[ク]}$である.
(3)曲線$C$と$x$軸,および点$\mathrm{A}$を通り$y$軸に平行な直線$\ell$で囲まれた図形の面積は$\displaystyle \frac{[ケ]}{[コ]} \pi$である.
(4)$(2)$の接線,$x$軸および直線$\ell$とで囲まれた図形から$(3)$の図形を除いた部分の面積は$\displaystyle \frac{\pi^2}{[サ]}-\frac{\pi}{[シ]}+[ス]$である.
金沢工業大学 私立 金沢工業大学 2013年 第1問
次の問いに答えよ.

(1)$\displaystyle x=\frac{1}{\sqrt{7}+\sqrt{5}},\ y=\frac{1}{\sqrt{7}-\sqrt{5}}$のとき,
\[ x+y=\sqrt{[ア]},\quad xy=\frac{[イ]}{[ウ]},\quad x^2+y^2=[エ] \]
である.
(2)連立不等式$\left\{ \begin{array}{l}
2x+3 \leqq 4x-7 \\
|x-6|<3
\end{array} \right.$の解は$[オ] \leqq x<[カ]$である.
(3)関数$y=-2x^2+6x-1 (0 \leqq x \leqq 4)$は$\displaystyle x=\frac{[キ]}{[ク]}$で最大値$\displaystyle \frac{[ケ]}{[コ]}$をとり,$x=[サ]$で最小値$[シ][ス]$をとる.
(4)放物線$y=x^2-3x+2$を$x$軸方向に$3$,$y$軸方向に$-2$だけ平行移動してできる曲線は放物線$y=x^2-[セ]x+[ソ][タ]$である.
(5)$0^\circ \leqq \theta \leqq 180^\circ$とする.$\tan \theta=-\sqrt{6}$のとき,$\displaystyle \sin \theta=\frac{\sqrt{[チ][ツ]}}{[テ]}$,$\displaystyle \cos \theta=-\frac{\sqrt{[ト]}}{[ナ]}$である.
(6)$(x^2-1)^{10}$の展開式における$x^4$の係数は$[ア][イ]$である.
(7)赤球$5$個,白球$3$個が入っている袋から$2$個の球を同時に取り出すとき,取り出した球が$2$個とも赤球である確率は$\displaystyle \frac{[ウ]}{[エ][オ]}$であり,取り出した$2$個の球が異なる色である確率は$\displaystyle \frac{[カ][キ]}{[ク][ケ]}$である.
(8)$\triangle \mathrm{ABC}$において$\mathrm{AB}=4$,$\mathrm{BC}=9$,$\mathrm{CA}=7$であるとき,$\displaystyle \cos A=\frac{[コ][サ]}{[シ]}$である.また,$\triangle \mathrm{ABC}$の面積は$[ス] \sqrt{[セ]}$である.
日本女子大学 私立 日本女子大学 2013年 第2問
$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.線分$\mathrm{BC}$を$s:(1-s)$に内分する点$\mathrm{P}$,線分$\mathrm{AP}$を$t:(1-t)$に内分する点$\mathrm{Q}$をとる.ただし$0<s<1$,$0<t<1$とする.

(1)$\overrightarrow{\mathrm{OP}}$を$s$,$\overrightarrow{b}$,$\overrightarrow{c}$で表せ.
(2)$\overrightarrow{\mathrm{OQ}}$を$s$,$t$,$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$で表せ.
(3)$\displaystyle \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OQ}}=\frac{2}{3}$,$\displaystyle \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OQ}}=\frac{3}{4}$のとき,$s$,$t$の値を求めよ.ここで$\cdot$は内積を表す.
日本女子大学 私立 日本女子大学 2013年 第3問
平面上に$2$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(0,\ 1)$がある.$t$を$\displaystyle 0 \leqq t<\frac{1}{2}$を満たす実数とする.点$\mathrm{P}$を線分$\mathrm{OA}$上で$\mathrm{AP}=t$となるようにとる.直線$y=1$上の$\mathrm{A}$より右側の部分に点$\mathrm{S}$を$\mathrm{PO}=\mathrm{PS}$となるようにとる.$\angle \mathrm{OPS}$の二等分線が$x$軸と交わる点を$\mathrm{R}$とする.

(1)$\mathrm{AS}$の長さを$t$で表せ.
(2)$\mathrm{OR}$の長さを$t$で表せ.
(3)$t$が$\displaystyle 0 \leqq t<\frac{1}{2}$の範囲を動くとき,$\mathrm{PR}$の長さの最小値を求めよ.また,$\mathrm{PR}$の長さを最小にする$t$の値を求めよ.
(図は省略)
広島修道大学 私立 広島修道大学 2013年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)$30$以下の自然数の集合を全体集合$U$とし,$U$の部分集合で$3$の倍数の集合を$A$,$U$の部分集合で$4$の倍数の集合を$B$とする.このとき,要素を書き並べる方法で表すと,$A \cap B=[$1$]$,$\overline{A} \cap B=[$2$]$である.
(2)$3$個の数字$0,\ 1,\ 2$を,重複を許して並べてできる$5$桁の整数は$[$3$]$個ある.そのうち,$0,\ 1,\ 2$の$3$個の数字がすべて使われている整数は$[$4$]$個ある.
(3)関数$y=\sin x \cos x (0 \leqq x \leqq \pi)$の最小値は$[$5$]$であり,関数$\displaystyle y=\sin \left( x+\frac{2}{3} \pi \right) (0 \leqq x \leqq \pi)$の最大値は$[$6$]$である.
(4)円$(x-a)^2+y^2=4$と直線$\displaystyle y=x-\frac{a}{2}$が接するとき,定数$a$の値は$a=[$7$]$または$a=[$8$]$である.
(5)不等式$\displaystyle 9^{x+\frac{1}{2}}-10 \cdot 3^x+3 \leqq 0$の解は$[$9$]$である.
(6)方程式$\displaystyle \frac{1}{2}x^3+mx+n=0$の解の$1$つが$-1-\sqrt{3}i$のとき,実数$m,\ n$の値は$m=[$10$]$,$n=[$11$]$である.
広島修道大学 私立 広島修道大学 2013年 第1問
次の各問に答えよ.

(1)方程式$|2x-3|+3=(x-3)^2$を解け.
(2)$21$本のくじの中に当たりくじが$n$本ある.このくじを同時に$2$本引くとき,次の問に答えよ.ただし,$1 \leqq n \leqq 21$とする.

(i) $2$本ともはずれる確率を求めよ.
(ii) 少なくとも$1$本は当たる確率が$\displaystyle \frac{1}{2}$以上となる最小の$n$を求めよ.

(3)$x,\ y$は実数とする.

命題$p$:「$x \neq 3$または$y \neq 2$」ならば「$2x-y \neq 4$または$x+y \neq 5$」

について次の問に答えよ.

(i) 命題$p$の対偶を述べよ.
(ii) 命題$p$を証明せよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。