タグ「分数」の検索結果

249ページ目:全4648問中2481問~2490問を表示)
鳴門教育大学 国立 鳴門教育大学 2013年 第3問
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を円周上の相異なる$3$点とし,$\mathrm{AB}=\mathrm{AC}$とする.点$\mathrm{A}$を含まない弧$\mathrm{BC}$上に点$\mathrm{P}$をとる.$\angle \mathrm{BPA}$を$\theta$と書く.次の問いに答えよ.

(1)$\mathrm{AB}$を$\mathrm{AP}$,$\mathrm{BP}$,$\theta$を用いて表せ.
(2)$\displaystyle \frac{\mathrm{BP}+\mathrm{PC}}{\mathrm{AP}}$の値は,点$\mathrm{P}$の取り方によらず一定であることを証明せよ.
(3)$\mathrm{BP}+\mathrm{PC}$の値が最大となる点$\mathrm{P}$を求めよ.
東京海洋大学 国立 東京海洋大学 2013年 第3問
$n$人でじゃんけんを$1$回する.ただし,どの人もグー,チョキ,パーを出す確率は等しくそれぞれ$\displaystyle \frac{1}{3}$とする.また,「あいこ」とはじゃんけんで勝者が$1$人もいない状態のこととする.このとき次の問に答えよ.

(1)$n=3$のとき,「あいこ」となる確率を求めよ.
(2)$n=4$のとき,勝者が$1$人である確率および勝者が$2$人である確率をそれぞれ求めよ.
(3)$n=3,\ 4,\ 5,\ \cdots$のとき「あいこ」となる確率を$n$を用いて表せ.
東京海洋大学 国立 東京海洋大学 2013年 第3問
座標平面上の曲線$K$を$y=x^3-x+1$とする.

(1)点$(t,\ t^3-t+1)$における$K$の接線の方程式を$t$を用いて表せ.
(2)点$(1,\ 5)$を通る直線$\ell$が$K$と接するとき,接点の座標を求めよ.
(3)直線$\ell$と$K$で囲まれた図形の面積を求めよ.ただし,$\displaystyle \int x^3 \, dx=\frac{x^4}{4}+C$($C$は積分定数)を用いてよい.
東京海洋大学 国立 東京海洋大学 2013年 第5問
座標空間における$5$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(3,\ 0,\ 0)$,$\mathrm{B}(1,\ \sqrt{2},\ 1)$,$\displaystyle \mathrm{C} \left( \frac{\sqrt{3}}{2},\ \frac{\sqrt{6}}{6},\ \frac{\sqrt{3}}{6} \right)$,$\mathrm{R}(0,\ -1,\ \sqrt{2})$について次の問に答えよ.

(1)$\angle \mathrm{AOC}$,$\angle \mathrm{BOC}$,$\angle \mathrm{AOR}$,$\angle \mathrm{BOR}$を求めよ.
(2)$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$は同一平面上にあることを示せ.
(3)$2$点$\mathrm{P}$,$\mathrm{Q}$は正の実数$s,\ t$について$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OQ}}=t \overrightarrow{\mathrm{OB}}$をみたすものとする.$3$点$\mathrm{P}$,$\mathrm{C}$,$\mathrm{Q}$が$1$直線上にあるとき,四面体$\mathrm{OPQR}$の体積の最小値とそのときの$\mathrm{P}$,$\mathrm{Q}$の座標を求めよ.
京都教育大学 国立 京都教育大学 2013年 第1問
$\triangle \mathrm{ABC}$において頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に向かい合う辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$で表し,$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の大きさを,それぞれ$A,\ B,\ C$で表すものとする.$\triangle \mathrm{ABC}$の面積を$S$とし,$\displaystyle s=\frac{a+b+c}{2}$とおくと
\[ S=\sqrt{s(s-a)(s-b)(s-c)} \]
が成立することを余弦定理と公式
\[ S=\frac{1}{2}bc \sin A \]
を用いて証明せよ.
京都教育大学 国立 京都教育大学 2013年 第4問
四面体$\mathrm{OABC}$の辺$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{CA}$,$\mathrm{CB}$上にそれぞれ点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$をとる.このとき,直線$\mathrm{PQ}$と直線$\mathrm{RS}$が平行であるための必要十分条件は
\[ \frac{\mathrm{OP}}{\mathrm{OA}}=\frac{\mathrm{OQ}}{\mathrm{OB}} \quad \text{かつ} \quad \frac{\mathrm{CR}}{\mathrm{CA}}=\frac{\mathrm{CS}}{\mathrm{CB}} \]
であることを証明せよ.
京都教育大学 国立 京都教育大学 2013年 第6問
関数$f(x)$が次のように与えられているとする.
\[ f(x)=\frac{1}{4}(1-x^2)^2-\theta x \]
ただし$\theta$は実数とする.以下の問に答えよ.

(1)曲線$y=f(x)$上の点$\displaystyle \left( 0,\ \frac{1}{4} \right)$における接線の方程式を求めよ.
(2)曲線$y=f(x)$と$(1)$で求めた接線によって囲まれる図形の面積を求めよ.
(3)関数$f(x)$が極大値をもつときの$\theta$の範囲を求めよ.
愛媛大学 国立 愛媛大学 2013年 第3問
数列$\{a_n\}$を次のように定める.
\[ a_1=1,\quad a_2=4,\quad a_{n+2}=-a_{n+1}+12a_n \quad (n=1,\ 2,\ 3,\ \cdots) \]

(1)$b_n=a_{n+1}-3a_n \ (n=1,\ 2,\ 3,\ \cdots)$とおく.数列$\{b_n\}$の一般項を求めよ.
(2)$c_n=a_{n+1}+4a_n \ (n=1,\ 2,\ 3,\ \cdots)$とおく.数列$\{c_n\}$の一般項を求めよ.
(3)極限値$\displaystyle \lim_{n \to \infty}\frac{a_{n+1}}{a_n}$を求めよ.
島根大学 国立 島根大学 2013年 第3問
次の問いに答えよ.

(1)異なる$2$点$(-3,\ -3)$,$(a,\ b)$を通る直線の方程式を求めよ.ただし,$a,\ b$は実数とする.
(2)媒介変数表示$\left\{ \begin{array}{l}
x=2 \cos t \\
y=-\sin^2 t
\end{array} \right.$で表される曲線の概形をかけ.
(3)関数$\displaystyle f(t)=\frac{-\sin^2 t+3}{2\cos t+3}$の最大値および最小値を求めよ.
島根大学 国立 島根大学 2013年 第2問
数列$\{a_n\},\ \{b_n\}$を,$\displaystyle a_1=1,\ b_1=0,\ a_{n+1}=\frac{1}{4}a_n-\frac{\sqrt{3}}{4}b_n,\ b_{n+1}=\frac{\sqrt{3}}{4}a_n+\frac{1}{4}b_n$によって定め,座標が$(a_n,\ b_n)$である点を$\mathrm{C}_n$とする.原点を$\mathrm{O}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}_n}$の大きさ$|\overrightarrow{\mathrm{OC}_n}|$を,$n$を用いて表せ.
(2)$\overrightarrow{\mathrm{OC}_n}$と$\overrightarrow{\mathrm{OC}_{n+1}}$のなす角を求めよ.
(3)$S_n$を$\triangle \mathrm{OC}_n \mathrm{C}_{n+1}$の面積とするとき,$\displaystyle S_n \leqq \frac{1}{2^{2013}}$をみたす最小の自然数$n$を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。