タグ「分数」の検索結果

248ページ目:全4648問中2471問~2480問を表示)
防衛医科大学校 国立 防衛医科大学校 2013年 第4問
$X_1=\left( \begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array} \right)$,$X_2=\left( \begin{array}{cc}
6 & 5 \\
1 & 3
\end{array} \right)$,
\[ \begin{array}{r}
X_n=\left( \begin{array}{cc}
\displaystyle\frac{9}{4} & \displaystyle\frac{3}{2} \\
-\displaystyle\frac{1}{2} & \displaystyle\frac{1}{2}
\end{array} \right)X_{n-1}-\left( \begin{array}{cc}
\displaystyle\frac{5}{4} & \displaystyle\frac{3}{2} \\
-\displaystyle\frac{1}{2} & -\displaystyle\frac{1}{2}
\end{array} \right)X_{n-2}+\left( \begin{array}{cc}
\displaystyle\frac{1}{4} & \displaystyle\frac{3}{2} \\
-\displaystyle\frac{1}{2} & -\displaystyle\frac{3}{2}
\end{array} \right) \\
(n=3,\ 4,\ 5,\ \cdots)
\end{array} \]
で定義される$2$次の正方行列の列がある.このとき,以下の問に答えよ.

(1)$A=\left( \begin{array}{cc}
1 & 0 \\
1 & 0
\end{array} \right)$,$B=\left( \begin{array}{cc}
0 & 0 \\
-1 & 1
\end{array} \right)$,$C=\left( \begin{array}{cc}
\displaystyle\frac{5}{4} & \displaystyle\frac{3}{2} \\
-\displaystyle\frac{1}{2} & -\displaystyle\frac{1}{2}
\end{array} \right)$,$P=\left( \begin{array}{cc}
2 & 3 \\
1 & 1
\end{array} \right)$とする.$C=P^{-1}(kA+lB)P$を満たす実数$k$と$l$を求めよ.
(2)$C+C^2+\cdots +C^n=\left( \begin{array}{cc}
\alpha_n & \beta_n \\
\gamma_n & \delta_n
\end{array} \right) \ (n=1,\ 2,\ 3,\ \cdots)$とする.このとき,極限値$\displaystyle \lim_{n \to \infty}\alpha_n$,$\displaystyle \lim_{n \to \infty}\beta_n$,$\displaystyle \lim_{n \to \infty}\gamma_n$,$\displaystyle \lim_{n \to \infty}\delta_n$を求めよ.
(3)$X_n=\left( \begin{array}{cc}
a_n & b_n \\
c_n & d_n
\end{array} \right) \ (n=1,\ 2,\ 3,\ \cdots)$としたとき,極限値$\displaystyle \lim_{n \to \infty}a_n$,$\displaystyle \lim_{n \to \infty}b_n$,$\displaystyle \lim_{n \to \infty}c_n$,$\displaystyle \lim_{n \to \infty}d_n$が存在するかどうかを考察し,存在する場合はその値を求めよ.
岐阜大学 国立 岐阜大学 2013年 第2問
$xy$平面上に中心$(1,\ 0)$,半径$2$の円$C$がある.円$C$と$y$軸との交点のうち,$y$座標が負である点を$\mathrm{P}$とする.以下の問に答えよ.

(1)点$\mathrm{P}$の座標を求めよ.
(2)点$\mathrm{Q}$が円$C$の周から点$\mathrm{P}$を除いた部分を動くとき,線分$\mathrm{PQ}$の中点$\mathrm{R}$の軌跡を求めよ.
(3)点$\mathrm{Q}$は円$C$の周から点$\mathrm{P}$を除いた部分を動くとする.また,$k$を$1$以外の正の実数とし,線分$\mathrm{PQ}$を$k:1$に外分する点を$\mathrm{S}$とする.このとき点$\mathrm{S}$の軌跡を求めよ.
(4)$k=3$のとき,直線$\displaystyle y=x+a+\frac{\sqrt{3}}{2}$が(3)で求めた軌跡と共有点をもつような$a$の値の範囲を求めよ.
滋賀医科大学 国立 滋賀医科大学 2013年 第4問
$xy$平面において,連立不等式
\[ x^2+y^2 \leqq 1,\quad x \geqq 0,\quad y \geqq 0 \]
で定まる図形を$S$とする.$t$を$0<t<1$となる定数とし,$S$を直線$y=t$で$2$つの部分に切断する.$S_1$を$S$と領域$y \geqq t$の共通部分,$S_2$を$S$と領域$y \leqq t$の共通部分とする.

(1)図形$S_1,\ S_2$を描け.
(2)$S_1,\ S_2$を$y$軸の周りに$1$回転させてできる立体をそれぞれ$V_1,\ V_2$とする.不等式
\[ \frac{(S_1 \ \text{の面積})}{(S_2 \ \text{の面積})} \geqq \frac{(V_1 \ \text{の体積})}{(V_2 \ \text{の体積})} \]
を示せ.
愛媛大学 国立 愛媛大学 2013年 第1問
数列$\{a_n\}$を次のように定める.
\[ a_1=1,\quad a_2=4,\quad a_{n+2}=-a_{n+1}+12a_n \quad (n=1,\ 2,\ 3,\ \cdots) \]

(1)$b_n=a_{n+1}-3a_n \ (n=1,\ 2,\ 3,\ \cdots)$とおく.数列$\{b_n\}$の一般項を求めよ.
(2)$c_n=a_{n+1}+4a_n \ (n=1,\ 2,\ 3,\ \cdots)$とおく.数列$\{c_n\}$の一般項を求めよ.
(3)極限値$\displaystyle \lim_{n \to \infty}\frac{a_{n+1}}{a_n}$を求めよ.
宮崎大学 国立 宮崎大学 2013年 第1問
座標平面上に,半円$C:x^2+y^2=4$(ただし,$x>0$)と放物線$D:x^2-6y+3=0$がある.半円$C$上の点$\mathrm{P}(2 \cos \theta,\ 2 \sin \theta)$(ただし,$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$)における半円$C$の接線を$\ell$とするとき,次の各問に答えよ.

(1)半円$C$と放物線$D$との交点$\mathrm{Q}$の座標を求めよ.
(2)直線$\ell$が放物線$D$に点$\mathrm{R}$において接するとき,$\theta$の値と点$\mathrm{R}$の座標を求めよ.
(3)$(2)$のとき,半円$C$と放物線$D$および直線$\ell$によって囲まれる部分の面積を求めよ.
愛媛大学 国立 愛媛大学 2013年 第2問
行列$\left( \begin{array}{cc}
\displaystyle\frac{5}{2} & -\displaystyle\frac{1}{4} \\
a & b
\end{array} \right)$で表される$1$次変換を$f$とする.$f$は$3$点$\mathrm{A}(1,\ m)$,$\mathrm{B}(0,\ 1)$,$\mathrm{C}(m,\ -1)$に対して,次の$2$つの条件$①,\ ②$を満たすものとする.ただし,$\mathrm{O}$は原点である.

$①$ $\mathrm{A}$の$f$による像は$\mathrm{A}$自身である
$②$ $\mathrm{B}$の$f$による像を$\mathrm{B}^\prime$とすると,$\overrightarrow{\mathrm{BB^\prime}}$と$\overrightarrow{\mathrm{OC}}$は垂直である


(1)$a,\ b,\ m$の値を求めよ.
(2)$\mathrm{P}(x,\ y)$を任意の点とし,$\mathrm{P}$の$f$による像を$\mathrm{P}^\prime$とする.$\overrightarrow{\mathrm{PP^\prime}}$と$\overrightarrow{\mathrm{OC}}$の内積を求めよ.
(3)点$\mathrm{Q}(t,\ t^2-1)$の$f$による像を$\mathrm{Q}^\prime$とする.$|\overrightarrow{\mathrm{QQ^\prime}}|$の値が最小となる実数$t$の値を求めよ.
岐阜大学 国立 岐阜大学 2013年 第5問
$a,\ b$を$\displaystyle a^2+\frac{b^2}{6}=1$を満たす正の実数とする.行列$A=\left( \begin{array}{cc}
2 \sqrt{2}a & b \\
-b & -\sqrt{2}a
\end{array} \right)$に対して,以下の問に答えよ.

(1)実数$p,\ q$が$A^2=pA+qE$を満たすとき,$p,\ q$を$a$を用いて表せ.ただし,$E$は$2$次の単位行列とする.
(2)$\displaystyle a=\frac{1}{\sqrt{2}}$のとき,$\displaystyle \sum_{k=1}^{100}(-1)^kA^k$を求めよ.
(3)$\displaystyle a=\frac{1}{\sqrt{2}}$とし,$m$を正の整数とする.$x$と$y$についての方程式$A^m \left( \begin{array}{c}
x \\
y
\end{array} \right)=\left( \begin{array}{c}
-x \\
0
\end{array} \right)$が$x=y=0$以外の解をもつとき,$m$の満たす条件を求めよ.
宮崎大学 国立 宮崎大学 2013年 第3問
次の各問に答えよ.

(1)方程式$2 \cdot 8^x-3 \cdot 4^{x+1}+5 \cdot 2^{x+1}+24=0$を満たすような実数$x$をすべて求めよ.
(2)実数$\theta$に対し,関数$f(\theta)$と$g(\theta)$を,
\[ f(\theta)=(\cos \theta)(\cos 2\theta)(\cos 3\theta),\quad g(\theta)=(\sin \theta)(\sin 2\theta)(\sin 3\theta) \]
とおくとき,次の$(ⅰ),\ (ⅱ)$に答えよ.

(i) 関数$f(\theta),\ g(\theta)$は,それぞれ
\[ \begin{array}{l}
f(\theta)=p+q \cos 2\theta+r \cos 4\theta+s \cos 6\theta \\
g(\theta)=t+u \sin 2\theta+v \sin 4\theta+w \sin 6\theta
\end{array} \]
のように表されることを示せ.ただし,$p,\ q,\ r,\ s,\ t,\ u,\ v,\ w$は$\theta$によらない定数とする.
(ii) $0 \leqq \theta \leqq \pi$のとき,方程式$\displaystyle f(\theta)=g \left( \theta+\frac{\pi}{4} \right)$を満たすような$\theta$をすべて求めよ.
宮崎大学 国立 宮崎大学 2013年 第5問
最初,数直線上の原点に点$\mathrm{P}$を置き,コインを$1$回投げるごとに以下のように点$\mathrm{P}$の位置を定める.

\mon[$①$] 点$\mathrm{P}$の座標が$-2$以上$3$以下のとき,コインの表が出れば正の向きに$1$だけ点$\mathrm{P}$を進め,裏が出れば負の向きに$1$だけ点$\mathrm{P}$を進める.
\mon[$②$] 点$\mathrm{P}$の座標が$-3$または$4$のとき,コインの表裏にかかわらず点$\mathrm{P}$を動かさない.

コインを投げて$①,\ ②$に従い点$\mathrm{P}$の位置を定める操作を$6$回行う.この$6$回の操作によって定めた点$\mathrm{P}$の最終的な位置の座標を$a$とする.ただし,コインの表と裏が出る確率はそれぞれ$\displaystyle \frac{1}{2}$とする.このとき,次の各問に答えよ.

(1)$a=-3$となる確率と$a=4$となる確率をそれぞれ求めよ.
(2)$a$の期待値を求めよ.
長崎大学 国立 長崎大学 2013年 第2問
次の問いに答えよ.

(1)$\displaystyle a_1=\frac{3}{2},\ a_{n+1}+2a_{n+1}a_n-3a_n=0 \ (n \geqq 1)$で与えられる数列$\{a_n\}$について,$a_2,\ a_3,\ a_4,\ a_5$の値を求めよ.また,一般項$a_n$を推測し,その推測の結果を数学的帰納法で証明せよ.
(2)$\displaystyle \frac{7}{12}\pi=\frac{\pi}{3}+\frac{\pi}{4}$であることを利用して$\displaystyle \sin \frac{7}{12}\pi$を求め,$1 \leqq x \leqq 4$のとき,次の方程式を解け.
\[ \sin x=\frac{\sqrt{6}+\sqrt{2}}{4} \]
(3)$\displaystyle 0 \leqq x<\frac{\pi}{2}$とする.このとき,$X=\log_2 \cos x$の範囲を求め,次の不等式を解け.
\[ 2(\log_2 \cos x)^2+(4-\log_2 3)\log_2 \cos x+2-\log_23 \leqq 0 \]
{\bf 注意:} $\log_2 \cos x$は$\log_2(\cos x)$を表す.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。