タグ「分数」の検索結果

247ページ目:全4648問中2461問~2470問を表示)
山口大学 国立 山口大学 2013年 第2問
等式$\left( \begin{array}{cc}
2 & 3 \\
3 & 5
\end{array} \right) \left( \begin{array}{c}
1 \\
y
\end{array} \right)=x \left( \begin{array}{c}
1 \\
y
\end{array} \right)$を満たす定数$x,\ y$の組$(x,\ y)$を$(x_1,\ y_1)$,$(x_2,\ y_2)$とする.ただし,$y_1<y_2$とする.このとき,次の問いに答えなさい.

(1)$(x_1,\ y_1)$,$(x_2,\ y_2)$を求めなさい.
(2)次の等式を満たす定数$\alpha,\ \beta$の値を求めなさい.
\[ \alpha \left( \begin{array}{c}
1 \\
y_1
\end{array} \right)+\beta \left( \begin{array}{c}
1 \\
y_2
\end{array} \right)=\left( \begin{array}{c}
2 \\
2
\end{array} \right) \]
(3)数列$\{a_n\},\ \{b_n\}$が,
\[ \left( \begin{array}{c}
a_n \\
b_n
\end{array} \right)=\left( \begin{array}{cc}
2 & 3 \\
3 & 5
\end{array} \right)^n \left( \begin{array}{c}
2 \\
2
\end{array} \right) \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定められるとき,$\displaystyle \lim_{n \to \infty}\frac{b_n}{a_n}$を求めなさい.
島根大学 国立 島根大学 2013年 第2問
円周上に異なる$n$個の点があり,どの$2$点も線分で結ばれている.ここで$n$は$4$以上の自然数とする.同様の確からしさで異なる$2$本の線分を$1$組選ぶとき,その$2$本が円の内部で交わっている確率を考える.たとえば,$n=4$のときは,線分が$6$本,異なる$2$本の線分の組が$15$組,そのうち円の内部で交わるものは$1$組で,円の内部で交わっている確率は$\displaystyle \frac{1}{15}$となる.このとき,次の問いに答えよ.

(1)$n=5$のとき,線分の数,異なる$2$本の線分の組の数,そのうち円の内部で交わっている組の数をそれぞれ求めよ.また,異なる$2$本の線分を$1$組選ぶとき,その$2$本が円の内部で交わっている確率を求めよ.
(2)一般に,異なる$2$本の線分を$1$組選ぶとき,その$2$本が円の内部で交わっている確率を$n$を用いて表せ.
島根大学 国立 島根大学 2013年 第3問
$A$を$2$次正方行列とする.座標平面上の点$\mathrm{P}_1(1,\ 0)$が,$A$の表す移動により$\displaystyle \left( \frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$に,$A^2$の表す移動により$\displaystyle \left( -\frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$に移るとする.このとき,次の問いに答えよ.

(1)$A$を求めよ.
(2)$\displaystyle B=\frac{1}{2}A^3$とする.$B$の表す移動によって,点$\mathrm{P}_1$が移る点を$\mathrm{P}_2$と定め,点$\mathrm{P}_2$が移る点を$\mathrm{P}_3$と定める.以下同様にして$B$の表す移動によって点$\mathrm{P}_{n-1}$が移る点を$\mathrm{P}_n$と定める.このとき,点$\mathrm{P}_n$の座標を求めよ.
(3)(2)で定めた点$\mathrm{P}_n$から曲線$y=x^2$に引いた接線で,$x$軸に平行でないものの傾きを$a_n$とおく.このとき,$\displaystyle \sum_{n=1}^\infty a_n$を求めよ.
宮崎大学 国立 宮崎大学 2013年 第3問
平面上に,$1$辺の長さが$1$の正三角形$\mathrm{ABC}$をとり,$\overrightarrow{a}=\overrightarrow{\mathrm{CA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{CB}}$とおく.また,直線$\mathrm{AC}$,$\mathrm{BC}$上にそれぞれ点$\mathrm{P}$,$\mathrm{Q}$を$\displaystyle \overrightarrow{\mathrm{CP}}=\frac{1}{2}\overrightarrow{a}$,$\overrightarrow{\mathrm{CQ}}=2 \overrightarrow{b}$であるようにとる.線分$\mathrm{PQ}$の中点を$\mathrm{R}$とし,直線$\mathrm{AB}$上に点$\mathrm{D}$を$\mathrm{DR} \perp \mathrm{PQ}$であるようにとる.このとき,次の各問に答えよ.

(1)$\overrightarrow{\mathrm{CR}}$を,$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{DR}}$を,$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)直線$\mathrm{DR}$と直線$\mathrm{BC}$の交点を$\mathrm{E}$とするとき,線分$\mathrm{CE}$の長さを求めよ.
宮崎大学 国立 宮崎大学 2013年 第5問
座標平面上に,半円$C:x^2+y^2=4$(ただし,$x>0$)と放物線$D:x^2-6y+3=0$がある.半円$C$上の点$\mathrm{P}(2 \cos \theta,\ 2 \sin \theta)$(ただし,$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$)における半円$C$の接線を$\ell$とするとき,次の各問に答えよ.

(1)半円$C$と放物線$D$との交点$\mathrm{Q}$の座標を求めよ.
(2)直線$\ell$が放物線$D$に点$\mathrm{R}$において接するとき,$\theta$の値と点$\mathrm{R}$の座標を求めよ.
(3)$(2)$のとき,半円$C$と放物線$D$および直線$\ell$によって囲まれる部分の面積を求めよ.
長崎大学 国立 長崎大学 2013年 第1問
円$C_1:x^2-4x+y^2=0$と直線$\displaystyle \ell:y=\frac{\sqrt{3}}{3}x$がある.次の問いに答えよ.

(1)円$C_1$と直線$\ell$の交点のうち,原点$\mathrm{O}$と異なるものを$\mathrm{A}$とする.点$\mathrm{A}$の座標を求めよ.さらに,原点$\mathrm{O}$を頂点とし,点$\mathrm{A}$を通る放物線$C_2$の方程式を$y=ax^2$とする.$a$の値を求めよ.
(2)直線$\ell$の傾きを$\tan \theta$と表す.そのときの$\theta$の値を求めよ.ただし,$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$とする.
(3)円$C_1$と直線$\ell$で囲まれた図形のうち,直線$\ell$の上側にある部分の面積$S_1$を求めよ.
(4)円$C_1$と放物線$C_2$で囲まれた図形のうち,放物線$C_2$の上側にある部分の面積$S_2$を求めよ.
(5)放物線$C_2$の接線で,直線$\ell$とのなす角が$\displaystyle \frac{\pi}{4}$であるものを考える.そのすべてについて,接点の$x$座標を求めよ.
九州工業大学 国立 九州工業大学 2013年 第2問
関数$f(x)=\log (x^2-x+2) \ (0 \leqq x \leqq 1)$に対して,以下の問いに答えよ.ただし,対数は自然対数を表している.

(1)$y=f(x) \ (0 \leqq x \leqq 1)$の極値を求めよ.
(2)$x$についての方程式$\log (x^2-x+2)=x$は$\displaystyle \frac{1}{2}<x<1$の範囲に実数解をただ$1$つもつことを示せ.必要であれば,$\log 2<0.7$,$\log 7>1.9$であることを用いてよい.
(3)$y=f^\prime(x) \ (0 \leqq x \leqq 1)$の最大値と最小値を求めよ.
(4)平均値の定理を用いることで,$0 \leqq a<b \leqq 1$となる実数$a,\ b$に対して,$\displaystyle |f(b)-f(a)|<\frac{1}{2}|b-a|$となることを示せ.
防衛医科大学校 国立 防衛医科大学校 2013年 第3問
$-\infty<x<\infty$で定義される$2$つの関数$f(x)=|\cos x|\sin x$,$g(x)=e^{-x}f(x)$について,以下の問に答えよ.

(1)$y=f(x)$のグラフを描け.ただし,$x$の範囲は,$0 \leqq x \leqq 4\pi$とせよ.
(2)すべての$x$に対し,$f(x)=f(x+T)$を満たす正の数$T$のうち,最小の値$\omega$を求めよ.
(3)$\displaystyle \int_0^{\frac{\pi}{2}} g(x) \, dx$を求めよ.
(4)極限値$\displaystyle \lim_{n \to \infty}\int_0^{n \omega}g(x) \, dx$を求めよ.
岐阜大学 国立 岐阜大学 2013年 第4問
正の整数$n$について,$x>0$で定義された関数$f_n(x)$を次で定める.
\[ \begin{array}{l}
f_1(x)=x \log x \\
f_{n+1}(x)=(n+1) \int_1^x f_n(t) \, dt+\displaystyle\frac{1}{n+1}(x^{n+1}-1)
\end{array} \]
以下の問に答えよ.ただし,$\log x$は$x$の自然対数とする.

(1)関数$f_2(x)$を求めよ.
(2)関数$f_n(x)$の具体的な形を推測し,それを数学的帰納法で証明せよ.
(3)$g(x)=|f_2(x)|-|x-1|$とおくとき,$g(x)$が$x=1$で微分可能であることを証明せよ.また,微分係数$g^\prime(1)$を求めよ.
九州工業大学 国立 九州工業大学 2013年 第1問
$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$の範囲において,曲線$C_1:y=\sin 2x$と曲線$C_2:y=\cos x$の交点の$x$座標を$a,\ b,\ c \ (a<b<c)$とする.以下の問いに答えよ.

(1)$a,\ b,\ c$の値を求めよ.
(2)交点$(b,\ \sin 2b)$における$2$つの曲線$C_1$と$C_2$のそれぞれの接線は垂直ではないことを示せ.
(3)$a \leqq x \leqq b$の範囲で$2$つの曲線$C_1,\ C_2$によって囲まれた部分の面積を$S_1$とし,$b \leqq x \leqq c$の範囲で$2$つの曲線$C_1,\ C_2$によって囲まれた部分の面積を$S_2$とするとき,$2$つの面積の比$S_1:S_2$を求めよ.
(4)曲線$C_1$の$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$の部分と$x$軸で囲まれた部分を,$x$軸の周りに$1$回転させてできる立体の体積$V$を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。