タグ「分数」の検索結果

243ページ目:全4648問中2421問~2430問を表示)
山形大学 国立 山形大学 2013年 第1問
面積が$1$である$\triangle \mathrm{ABC}$の辺$\mathrm{BC}$上に点$\mathrm{D}$があり,辺$\mathrm{CA}$上に点$\mathrm{E}$があり,辺$\mathrm{AB}$上に点$\mathrm{F}$がある.正の実数$x,\ y,\ z,\ w$を$\mathrm{AF}:\mathrm{FB}=x:y$,$\mathrm{BD}:\mathrm{DC}=y:z$,$\mathrm{CE}:\mathrm{EA}=z:w$となるように定める.線分$\mathrm{AD}$,$\mathrm{BE}$,$\mathrm{CF}$が$\triangle \mathrm{ABC}$の内部の点$\mathrm{G}$で交わるとき,次の問に答えよ.

(1)三角形の面積の比を用いて,$\displaystyle \frac{x}{y} \cdot \frac{y}{z} \cdot \frac{z}{w}=1$となることを示せ.
(2)$\triangle \mathrm{AFE}$の面積を$x,\ y,\ z$を用いて表せ.
(3)$\displaystyle \alpha=\frac{x}{y},\ \beta=\frac{y}{z}$とする.このとき,$\triangle \mathrm{DEF}$の面積を$\alpha,\ \beta$を用いて表せ.
(4)$\triangle \mathrm{DEF}$の面積が最大となるのは,点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$が各辺の中点となるときであることを示せ.
山形大学 国立 山形大学 2013年 第3問
$R,\ r$を正の実数とし,$2r<R \leqq 3r$とする.右図のように,原点 \\
$\mathrm{O}$を中心とする半径$R$の固定された円$S$の内部に点$\mathrm{O}^\prime$を中心と \\
する半径$r$の円$T$があり,円$T$は円$S$に接しながらすべらずに \\
転がるものとする.ただし,点$\mathrm{O}^\prime$は点$\mathrm{O}$のまわりを反時計まわり \\
に動くものとする.はじめに点$\mathrm{O}^\prime$は$(R-r,\ 0)$の位置にあり, \\
円$T$上の点$\mathrm{P}$は$(R,\ 0)$の位置にあるとする.$x$軸の正の部分と \\
動径$\mathrm{OO}^\prime$のなす角が$\theta$ラジアンのとき,点$\mathrm{P}$の座標を$(x(\theta),\ y(\theta))$とする.このとき,次の問に答えよ.
\img{72_2151_2013_1}{60}


(1)$x(\theta),\ y(\theta)$を$\theta$を用いて表せ.
(2)$\displaystyle 0<\theta<\frac{2r}{R} \cdot \frac{3}{2}\pi$において,$x(\theta)$が最小となるときの$\theta$の値を求めよ.
(3)$R=3,\ r=1$とする.$\theta>0$で点$\mathrm{P}$がはじめて$x$軸に到達したときの角$\theta_0$を求めよ.また,$0 \leqq \theta \leqq \theta_0$のとき,$y(\theta) \geqq 0$を示せ.
(4)$R=3,\ r=1$とする.$0 \leqq \theta \leqq \theta_0$における点$\mathrm{P}$の軌跡と$x$軸で囲まれた図形の面積を求めよ.
東京農工大学 国立 東京農工大学 2013年 第3問
次の問いに答えよ.

(1)$f(x)=\log (x+\sqrt{x^2+1})$とする.ただし,対数は自然対数とする.

(i) $f(x)$の導関数$f^\prime(x)$を求めよ.
(ii) 直線$y=x$と直線$\displaystyle x=\frac{3}{4}$および曲線$y=f(x)$で囲まれた部分の面積$S$を求めよ.

(2)$\displaystyle \alpha=\frac{2}{5}\pi$とする.

(i) $\cos 3\alpha=\cos 2\alpha$が成り立つことを用いて,$\cos \alpha$と$\cos 2\alpha$の値を求めよ.
(ii) $2$個のさいころを同時に投げるとき,出る目の数の和を$N$とする.このとき,座標平面上の点$\mathrm{P}(1,\ \sqrt{3})$を原点$\mathrm{O}$のまわりに角$N \alpha$だけ回転した点を$\mathrm{Q}$とし,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OQ}}$の内積を$T$とする.$T$の期待値を求めよ.
三重大学 国立 三重大学 2013年 第2問
$\theta$を$\displaystyle 0<\theta<\frac{\pi}{6}$となる実数とし,平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{P}(\cos \theta,\ \sin \theta)$,$\mathrm{Q}(\cos 3\theta,\ -\sin 3\theta)$をとる.さらに線分$\mathrm{PQ}$と$x$軸との交点を$\mathrm{R}$とする.以下の問いに答えよ.

(1)加法定理を用いて$\cos 3\theta$を$\cos \theta$だけで表す式を導け.同様に$\sin 3\theta$を$\sin \theta$だけで表す式を導け.
(2)$\mathrm{PR}:\mathrm{RQ}=5:11$のとき,$\sin \theta,\ \cos \theta$の値を求めよ.
(3)$(2)$の条件下で$\triangle \mathrm{POR}$の面積を求めよ.
三重大学 国立 三重大学 2013年 第2問
$\theta$を$\displaystyle 0<\theta<\frac{\pi}{6}$となる実数とし,平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{P}(\cos \theta,\ \sin \theta)$,$\mathrm{Q}(\cos 3\theta,\ -\sin 3\theta)$をとる.さらに線分$\mathrm{PQ}$と$x$軸との交点を$\mathrm{R}$とする.以下の問いに答えよ.

(1)加法定理を用いて$\cos 3\theta$を$\cos \theta$だけで表す式を導け.同様に$\sin 3\theta$を$\sin \theta$だけで表す式を導け.
(2)$\mathrm{PR}:\mathrm{RQ}=5:11$のとき,$\sin \theta,\ \cos \theta$の値を求めよ.
(3)(2)の条件下で$\triangle \mathrm{POR}$の面積を求めよ.
三重大学 国立 三重大学 2013年 第2問
$\theta$を$\displaystyle 0<\theta<\frac{\pi}{6}$となる実数とし,平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{P}(\cos \theta,\ \sin \theta)$,$\mathrm{Q}(\cos 3\theta,\ -\sin 3\theta)$をとる.さらに線分$\mathrm{PQ}$と$x$軸との交点を$\mathrm{R}$とする.以下の問いに答えよ.

(1)加法定理を用いて$\cos 3\theta$を$\cos \theta$だけで表す式を導け.同様に$\sin 3\theta$を$\sin \theta$だけで表す式を導け.
(2)$\mathrm{PR}:\mathrm{RQ}=5:11$のとき,$\sin \theta,\ \cos \theta$の値を求めよ.
(3)(2)の条件下で$\triangle \mathrm{POR}$の面積を求めよ.
三重大学 国立 三重大学 2013年 第4問
$e$で自然対数の底を表す.関数$f(x)$を
\[ f(x)=\log (x+\sqrt{x^2+e}) \]
で定めるとき,以下の問いに答えよ.

(1)関数$f(x)$を微分せよ.また$f^\prime(x)$が偶関数であることを示せ.
(2)定積分
\[ \int_{-1}^1 f(x) \cos \left( \frac{\pi}{2}x \right) \, dx \]
を求めよ.
(3)数列$\{a_n\}$を
\[ a_n=\int_{-1}^1 x^{2n} f(x) \cos \left( \frac{\pi}{2}x \right) \, dx \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.$n$を$2$以上とするとき,$a_n$と$a_{n-1}$の間に成り立つ関係式を求めよ.
大分大学 国立 大分大学 2013年 第4問
$f(x)=\log 2x$とし,曲線$y=f(x)$を$C$とする.曲線$C$と$x$軸との交点における曲線$C$の接線$\ell$の方程式を$y=g(x)$とする.

(1)直線$\ell$の方程式を求めなさい.
(2)$h(x)=g(x)-f(x) \ (x>0)$とおくと,$h(x) \geqq 0 \ (x>0)$であることを示しなさい.また,$h(x)=0$となる$x$の値を求めなさい.
(3)曲線$C$と直線$\ell$と直線$\displaystyle x=\frac{1}{2}e$で囲まれた部分の面積$S$を求めなさい.
お茶の水女子大学 国立 お茶の水女子大学 2013年 第4問
実数全体で定義された関数$f(x)$,$g(x)$を次のように定める.
\[ f(x)=\int_0^{\frac{\pi}{4}} (\tan t-x)^2 \, dt,\quad g(x)=\int_0^{\frac{\pi}{4}} |\tan t-x| \, dt \]

(1)$\displaystyle \int_0^{\frac{\pi}{4}} \tan t \, dt$,$\displaystyle \int_0^{\frac{\pi}{4}} \tan^2 t \, dt$を求めよ.
(2)$f(x)$の最小値とそのときの$x$の値を求めよ.
(3)$g(x)$の最小値とそのときの$x$の値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2013年 第5問
$\tan \alpha=2$,$\tan \beta=5$,$\tan \gamma=8$,$\displaystyle 0<\alpha,\ \beta,\ \gamma<\frac{\pi}{2}$とする.

(1)$\sin \alpha$を求めよ.
(2)$\tan (\alpha+\beta+\gamma)$,$\alpha+\beta+\gamma$を求めよ.
(3)$\beta-\alpha>\gamma-\beta$となることを示せ.
(4)$\displaystyle \beta>\frac{5\pi}{12}$となることを示せ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。