タグ「分数」の検索結果

233ページ目:全4648問中2321問~2330問を表示)
浜松医科大学 国立 浜松医科大学 2013年 第1問
関数$\displaystyle f(x)=\log x+\frac{1}{x}$と曲線$C:y=f(x) \ (x>0)$について,以下の問いに答えよ.なお,必要ならば$\displaystyle \lim_{x \to \infty}\frac{\log x}{x}=0$を用いてもよい.

(1)$f(x)$の導関数$f^\prime(x)$と不定積分$\displaystyle \int f(x) \, dx$をそれぞれ求めよ.
(2)曲線$C$の変曲点を求めよ.
以下$a$は$1$より大きい実数とし,点$(a,\ f(a))$における$C$の接線を$\ell(a)$とする.
(3)接線$\ell(a)$の方程式を求めよ.また,$a \neq 2$のとき,曲線$C$と接線$\ell(a)$は$2$個の共有点(接点と交点)をもつことを示せ.
(4)$a=2$とする.曲線$C$,接線$\ell(2)$と$2$直線$x=1,\ x=4$で囲まれた図形の面積を求めよ.
浜松医科大学 国立 浜松医科大学 2013年 第2問
$|k|<1$または$k>1$を満たす実数$k$に対し,次の$2$次曲線$C(k)$を考える.
\[ C(k):\frac{x^2}{k+1}+\frac{y^2}{k-1}=1 \]
以下の問いに答えよ.

(1)点$(1,\ 1)$を通る曲線$C(k)$をすべて求めて,その概形をかけ.
(2)曲線$C(3)$が点$(a,\ b) \ (a>0,\ b>0)$を通るとき,$a$と$b$の間に成り立つ関係式を求めよ.またこのとき,点$(a,\ b)$を通る曲線$C(k) \ (k \neq 3)$の方程式を,$b$を用いて表し,その焦点を求めよ.
(3)(2)の$2$つの曲線$C(3)$,$C(k)$について,点$(a,\ b)$における$C(3)$,$C(k)$の接線をそれぞれ$\ell_1$,$\ell_2$とする.$\ell_1$と$\ell_2$のなす角度を求めよ.
弘前大学 国立 弘前大学 2013年 第1問
$0 \leqq x \leqq \pi$のとき,次の不等式を解け.
\[ \sin 2x+\sqrt{3}\sin x-\sqrt{3}\cos x>\frac{3}{2} \]
弘前大学 国立 弘前大学 2013年 第2問
$a>0$となる定数$a$に対して,関数$\displaystyle f(x)=\frac{1}{3}x^3-a^2x-\frac{2}{3}a^3$とする.次の問いに答えよ.

(1)$y=|f(x)|$のグラフの概形をかけ.
(2)$-1 \leqq x \leqq 1$における関数$|f(x)|$の最大値を求めよ.
弘前大学 国立 弘前大学 2013年 第3問
$2$曲線$C_1:x^2+y^2=1$と$\displaystyle C_2:y=-\frac{\sqrt{3}}{3}(x-3)(x-\beta)$を考える.ただし,$\beta>3$とする.また,$C_1$上の点$\displaystyle \left( \frac{1}{2},\ -\frac{\sqrt{3}}{2} \right)$を通る$C_1$の接線$\ell$が$C_2$にも接しているとする.次の問いに答えよ.

(1)$\ell$と$C_2$の接点の座標および$\beta$の値を求めよ.
(2)$C_1$と$\ell$および$x$軸で囲まれた部分を$S_1$とし,$C_2$と$\ell$および$x$軸で囲まれた部分を$S_2$とする.このとき,$S_1$と$S_2$の面積をそれぞれ求めよ.
弘前大学 国立 弘前大学 2013年 第1問
次の問いに答えよ.

(1)区間$-1<x<1$における
\[ f(x)=\log ((1-x)^{1-x}(1+x)^{1+x}) \]
の最小値を求めよ.ただし,対数は自然対数である.
(2)区間$0 \leqq x \leqq 2\pi$における
\[ g(x)=\cos x+\frac{1}{2}\cos 2x+\frac{1}{3}\cos 3x \]
の最大値,最小値を求めよ.
弘前大学 国立 弘前大学 2013年 第2問
曲線$\displaystyle y=e^x+\frac{6}{e^x+1}$と直線$y=4$で囲まれた部分の面積を求めよ.ただし,$e$は自然対数の底である.
弘前大学 国立 弘前大学 2013年 第4問
$x \geqq 2$とし,区間$-1 \leqq t \leqq 1$における$f(t)=4t^3-x^2t$の最大値を$M(x)$で表す.このとき,次の問いに答えよ.

(1)$y=M(x)$のグラフの概形をかけ.
(2)曲線$y=M(x)$と$y$軸および$2$直線$\displaystyle y=\frac{8 \sqrt{3}}{9},\ y=10$で囲まれた部分の面積を求めよ.
岩手大学 国立 岩手大学 2013年 第1問
次の問いに答えよ.

(1)$3$次方程式$x^3-3x^2-px-1=0$が$2$重解$\displaystyle -\frac{1}{2}$をもつとき,他の解と実数$p$の値を求めよ.
(2)三角形$\mathrm{ABC}$において,$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の大きさをそれぞれ$A,\ B,\ C$で表し,辺$\mathrm{BC}$,辺$\mathrm{CA}$,辺$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$で表すとき
\[ (a \sin A-b \sin B)\cos (A+B)=0 \]
ならば,$\triangle \mathrm{ABC}$はどのような三角形か.
(3)関数$f(x)=ax^r+b \ (x>0)$において,$f(2)=27$,$f(4)=87$,$f(8)=387$を満たすとき,$a,\ b$の値を求めよ.
岩手大学 国立 岩手大学 2013年 第3問
数列$\{a_n\}$は,$a_1=1,\ a_n>0 \ (n=2,\ 3,\ \cdots)$であり,$\displaystyle S_n=\sum_{i=1}^n a_i$とするとき
\[ \frac{S_{n+1}}{S_n}=10^n \]
を満たすものとする.また,数列$\{b_n\}$を$b_n=\log_{10}S_n$と定義する.このとき,次の問いに答えよ.

(1)数列$\{b_n\}$の漸化式を導け.
(2)(1)の漸化式を用いて$\{b_n\}$の一般項を求めよ.
(3)数列$\{a_n\}$の$n \geqq 2$での一般項を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。