タグ「分数」の検索結果

231ページ目:全4648問中2301問~2310問を表示)
名古屋工業大学 国立 名古屋工業大学 2013年 第2問
$k$を正の定数とする.$2$つの曲線
\[ C_1:y=\cos x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right),\quad C_2:y=k \tan x \ \left( 0 \leqq x<\frac{\pi}{2} \right) \]
について,次の問いに答えよ.

(1)$C_1$と$C_2$の交点におけるそれぞれの曲線の接線を$\ell_1,\ \ell_2$とする.直線$\ell_1,\ \ell_2$がなす角を$\displaystyle \theta \ \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$とするとき,$\theta$の値を求めよ.
(2)$\displaystyle k=\frac{3}{2}$のとき,曲線$C_1,\ C_2$と$y$軸で囲まれる図形を$x$軸のまわりに回転させてできる立体の体積$V$を求めよ.
名古屋工業大学 国立 名古屋工業大学 2013年 第4問
三角形$\mathrm{OAB}$がある.点$\mathrm{O}$から直線$\mathrm{AB}$に下ろした垂線の足を$\mathrm{H}$とする.辺$\mathrm{AB}$の中点を$\mathrm{M}$とし,$\mathrm{M}$を通り辺$\mathrm{AB}$に垂直な直線と直線$\mathrm{OA}$との交点を$\mathrm{N}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,$|\overrightarrow{a}|=3$,$|\overrightarrow{b}|=2$,$\overrightarrow{a} \cdot \overrightarrow{b}=p$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b}$および$p$を用いて表せ.
(2)$\overrightarrow{\mathrm{ON}}$を$\overrightarrow{a},\ \overrightarrow{b}$および$p$を用いて表せ.
(3)$p \geqq 0$であるとき$\displaystyle \frac{\mathrm{ON}}{\mathrm{OA}}$の値の範囲を求めよ.
(4)点$\mathrm{N}$が線分$\mathrm{OA}$を$1:3$に内分するとき,三角形$\mathrm{OAB}$の面積$S$を求めよ.
静岡大学 国立 静岡大学 2013年 第2問
$\triangle \mathrm{OAB}$において,辺$\mathrm{OA}$を$1:2$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$の長さを$1$,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=k$とする.このとき,辺$\mathrm{OB}$上の点$\mathrm{Q}$に関して,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OQ}}=s \overrightarrow{\mathrm{OB}} \ (0 \leqq s \leqq 1)$のとき,$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$と$s$を用いて表せ.
(2)$\overrightarrow{\mathrm{OQ}}=s \overrightarrow{\mathrm{OB}} \ (0 \leqq s \leqq 1)$かつ$\displaystyle |\overrightarrow{\mathrm{PQ}}|=\frac{1}{3}|\overrightarrow{\mathrm{AB}}|$のとき,等式$9s^2-6ks+2k-1=0$が成り立つことを示せ.
(3)$\displaystyle |\overrightarrow{\mathrm{PQ}}|=\frac{1}{3}|\overrightarrow{\mathrm{AB}}|$を満たす点$\mathrm{Q}$が辺$\mathrm{OB}$上にただ$1$つ存在するような$k$の値の範囲を求めよ.ただし,点$\mathrm{Q}$が辺$\mathrm{OB}$上に存在するとは,$\mathrm{Q}$が$\mathrm{O}$または$\mathrm{B}$と一致する場合を含むものとする.
静岡大学 国立 静岡大学 2013年 第4問
関数
\[ c(x)=\frac{1}{2}(e^{2x}+e^{-2x}),\quad s(x)=\frac{1}{2}(e^{2x}-e^{-2x}),\quad t(x)=\frac{s(x)}{c(x)} \]
に対して,次の問いに答えよ.

(1)$\{c(x)\}^2-\{s(x)\}^2$を計算せよ.
(2)導関数$c^\prime(x),\ s^\prime(x),\ t^\prime(x)$を,それぞれ$c(x)$または$s(x)$を用いて表せ.
(3)$t(\log \sqrt{2})$と$t(\log \sqrt{3})$の値を求めよ.
(4)定積分$\displaystyle \int_{\log \sqrt{2}}^{\log \sqrt{3}}t(x) \, dx$と$\displaystyle \int_{\log \sqrt{2}}^{\log \sqrt{3}} \{t(x)\}^2 \, dx$を求めよ.
静岡大学 国立 静岡大学 2013年 第1問
半径$\mathrm{OA}=\mathrm{OB}=1$,中心角$\displaystyle \angle \mathrm{AOB}=2 \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$の扇形$\mathrm{OAB}$がある.長方形$\mathrm{PQRS}$は,扇形$\mathrm{OAB}$に内接し,その$2$辺が弦$\mathrm{AB}$と平行であるような長方形の中で面積が最大のものである.このとき,次の問いに答えよ.

(1)頂点$\mathrm{P}$と$\mathrm{Q}$が弧$\mathrm{AB}$上にあるとして,$\angle \mathrm{POQ}=2\alpha$とするとき,$\alpha$を$\theta$で表せ.
(2)長方形$\mathrm{PQRS}$の面積を$\theta$の三角比を用いて表せ.
(3)長方形$\mathrm{PQRS}$が正方形であるときの$\theta$の値を求めよ.
静岡大学 国立 静岡大学 2013年 第3問
関数$\displaystyle f(x)=\frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}}$に対して,曲線$y=f(x)$を$C$とする.このとき,次の問いに答えよ.

(1)極限値$\displaystyle \lim_{x \to \infty}f(x)$と$\displaystyle \lim_{x \to -\infty}f(x)$,および,$f^{\prime\prime}(x)=0$を満たす$x$の値を求めよ.
(2)曲線$C$の概形をかけ.
(3)曲線$C$について,傾きが$2$の接線$\ell$の方程式を求めよ.
(4)曲線$C$,(3)で求めた接線$\ell$,直線$x=\log \sqrt{2}$によって囲まれた図形$D$の面積を求めよ.
(5)(4)の図形$D$を$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
富山大学 国立 富山大学 2013年 第1問
$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$を満たす実数$t$に対して,$xy$平面上に$2$点$\mathrm{A}(1+2t,\ (1+t)\cos t+\sin t)$,$\mathrm{B}(-1,\ -(1+t)\cos t+\sin t)$を考える.$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線を$\ell_t$とする.このとき,次の問いに答えよ.

(1)直線$\ell_t$の方程式を求めよ.
(2)$k$を定数とし,直線$\ell_t$と直線$x=k$との交点を$\mathrm{P}$とする.$t$が$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$の範囲を動くとき,点$\mathrm{P}$の$y$座標のとりうる値の範囲を$k$を用いて表せ.
(3)$t$が$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$の範囲を動くとき,直線$\ell_t$の通りうる領域を図示せよ.
静岡大学 国立 静岡大学 2013年 第3問
半径$\mathrm{OA}=\mathrm{OB}=1$,中心角$\displaystyle \angle \mathrm{AOB}=2 \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$の扇形$\mathrm{OAB}$に内接し,その$2$辺が弦$\mathrm{AB}$と平行であるような長方形$\mathrm{PQRS}$について考える.頂点$\mathrm{P}$と$\mathrm{Q}$は弧$\mathrm{AB}$上に,残りの$2$頂点はそれぞれ辺$\mathrm{OA}$と$\mathrm{OB}$上にあるとして,$\angle \mathrm{POQ}=2\alpha$とする.このとき,次の問いに答えよ.

(1)長方形$\mathrm{PQRS}$の面積を,$\alpha$と$\theta$の三角比を用いて表せ.
(2)長方形$\mathrm{PQRS}$の面積が最大になるときの$\alpha$を$\theta$で表せ.
(3)$\displaystyle \theta=\frac{\pi}{3}$のとき,長方形$\mathrm{PQRS}$の面積の最大値を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2013年 第3問
曲線$\displaystyle y=\frac{1}{x} \ (x>0)$を曲線$C$とする.曲線$C$と直線$y=mx$の交点を点$\mathrm{P}$,曲線$C$と直線$\displaystyle y=\frac{1}{2}x$との交点を点$\mathrm{Q}$とする.ここで傾き$m$を$\displaystyle m>\frac{1}{2}$の実数とする.以下の問いに答えよ.

(1)点$\mathrm{P}$と点$\mathrm{Q}$の座標をそれぞれ求めよ.
(2)点$\mathrm{Q}$における曲線$C$の接線$L$の方程式を求めよ.
(3)接線$L$と直線$y=mx$の交点の座標を,$m$を用いて表せ.
(4)原点$\mathrm{O}$と点$\mathrm{P}$,原点$\mathrm{O}$と点$\mathrm{Q}$を結ぶ線分をそれぞれ$\mathrm{OP}$,$\mathrm{OQ}$とする.曲線$C$と$\mathrm{OP}$,$\mathrm{OQ}$で囲まれた部分の面積$A$を,$m$を用いて表せ.
(5)点$\mathrm{P}$および点$\mathrm{Q}$から$y$軸に垂直に引いたそれぞれの線分と,$y$軸および曲線$C$で囲まれた領域を$y$軸のまわりに$1$回転してできる体積を,$m$を用いて表せ.
富山大学 国立 富山大学 2013年 第2問
定数でない微分可能な関数$f(x)$が,すべての実数$k,\ x$について
\[ \int_{k-x}^{k+x}f(t) \, dt=\frac{x}{2}\{f(k-x)+2f(k)+f(k+x)\} \]
を満たすとする.このとき,次の問いに答えよ.

(1)$k$を定数とし,$g(x)=f(k+x)+f(k-x)$とおく.このとき,$g(x)$を$f(k)$,$x$,$g^\prime(x)$を用いて表せ.
(2)$x \neq 0$のとき$\displaystyle \left( \frac{g(x)}{x} \right)^\prime$を$f(k)$,$x$を用いて表せ.
(3)$g^\prime(x)$は定数関数であることを示せ.
(4)$f^\prime(k+x)=f^\prime(k-x)$であることを示せ.
(5)$f(x)$は$x$の$1$次関数であることを示せ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。