タグ「分数」の検索結果

227ページ目:全4648問中2261問~2270問を表示)
信州大学 国立 信州大学 2013年 第4問
放物線$y=(x-1)^2+q \ (q>0)$のグラフに,原点$\mathrm{O}$から引いた2本の接線が互いに垂直に交わっているとする.このとき,次の問に答えよ.

(1)$q$の値を求めよ.
(2)2本の接線と放物線とで囲まれる図形の面積を$S_1$とする.また,2本の接線と放物線との接点を点$\mathrm{A}$,$\mathrm{B}$とし,$\triangle \mathrm{OAB}$の面積を$S_2$とする.このとき,$\displaystyle \frac{S_2}{S_1}$の値を求めよ.
信州大学 国立 信州大学 2013年 第3問
$0<t<1$とする.$xy$平面上の曲線$\displaystyle C_1:y=t \cos x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と曲線$y=2 \sin x \ (0 \leqq x \leqq \pi)$について,次の問いに答えよ.

(1)2曲線$C_1,\ C_2$の交点の$x$座標を$\alpha$とするとき,$\sin \alpha$と$\cos \alpha$を$t$を用いて表せ.
(2)2曲線$C_1,\ C_2$と$y$軸で囲まれた図形の面積を$S(t)$とする.また,2曲線$C_1,\ C_2$と,$x$軸上の2点$\displaystyle \left( \frac{\pi}{2},\ 0 \right)$,$(\pi,\ 0)$を結ぶ線分で囲まれた図形の面積を$T(t)$とする.このとき,$S(t)$と$T(t)$を求めよ.
(3)極限値$\displaystyle \lim_{t \to +0}\frac{t^2T(t)}{S(t)}$を求めよ.
金沢大学 国立 金沢大学 2013年 第1問
正の実数$a,\ b,\ c$に対して,$\mathrm{O}$を原点とする座標空間に3点$\mathrm{A}(a,\ 0,\ 0)$,$\mathrm{B}(0,\ b,\ 0)$,$\mathrm{C}(0,\ 0,\ c)$がある.$\mathrm{AC}=2,\ \mathrm{BC}=3$かつ$\triangle \mathrm{ABC}$の面積が$\displaystyle \frac{3 \sqrt{3}}{2}$となるとき,次の問いに答えよ.

(1)$\sin \angle \mathrm{ACB}$の値を求めよ.また,線分$\mathrm{AB}$の長さを求めよ.
(2)$a,\ b,\ c$の値を求めよ.
(3)四面体$\mathrm{OABC}$の体積を求めよ.また,原点$\mathrm{O}$から$\triangle \mathrm{ABC}$に下ろした垂線の長さを求めよ.
金沢大学 国立 金沢大学 2013年 第2問
$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$に対して,関数$f(\theta)$を
\[ f(\theta)=\frac{2}{3}\sin 3\theta-\sin \theta-\sqrt{3} \cos \theta \]
とおく.$t=\sin \theta+\sqrt{3} \cos \theta$とするとき,次の問いに答えよ.

(1)$t$のとりうる値の範囲を求めよ.
(2)$\sin 3\theta=3 \sin \theta-4 \sin^3 \theta$を示せ.また,$\displaystyle \frac{t^3-3t}{2}=\sin 3\theta$が成り立つことを示せ.
(3)$f(\theta)$を$t$の式で表せ.また,それを利用して$f(\theta)$の最大値と最小値,および最大値,最小値を与える$\theta$の値を求めよ.
信州大学 国立 信州大学 2013年 第4問
$\theta$は実数とする.行列$A=\left( \begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array} \right)$について,次の問いに答えよ.

(1)すべての自然数$k$に対して$A^k=\left( \begin{array}{rr}
\cos k\theta & \sin k\theta \\
-\sin k\theta & \cos k\theta
\end{array} \right)$が成り立つことを,数学的帰納法を用いて示せ.
(2)$n$は2以上の自然数とし,$\displaystyle \theta=\frac{2\pi}{n}$とする.$B=A+A^2+\cdots +A^{n-1}$とおくとき,$AB=B+E-A$が成り立つことを示せ.ただし,$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$とする.
(3)(2)の条件のもとで,$B=-E$が成り立つことを示せ.
金沢大学 国立 金沢大学 2013年 第3問
$a>0$とする.$x \geqq 0$における関数$f(x)=e^{\sqrt{ax}}$と曲線$C:y=f(x)$について,次の問いに答えよ.

(1)$C$上の点$\displaystyle \mathrm{P} \left( \frac{1}{a},\ f \left( \frac{1}{a} \right) \right)$における接線$\ell$の方程式を求めよ.また,$\mathrm{P}$を通り$\ell$に直交する直線$m$の方程式を求めよ.
(2)定積分$\displaystyle \int_0^{\frac{1}{a}}f(x) \, dx$を$t=\sqrt{ax}$とおくことにより求めよ.
(3)曲線$C$,直線$y=1$および直線$m$で囲まれた図形の面積$S(a)$を求めよ.また,$a>0$における$S(a)$の最小値とそれを与える$a$の値を求めよ.
金沢大学 国立 金沢大学 2013年 第4問
行列$A=\left( \begin{array}{cc}
\displaystyle\frac{7}{2} & \displaystyle\frac{1}{2} \\
\displaystyle\frac{1}{2} & \displaystyle\frac{7}{2}
\end{array} \right),\ E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$に対して,次の問いに答えよ.

(1)実数$x,\ y,\ u,\ v$が,$xA+yE=uA+vE$を満たすならば,$x=u,\ y=v$であることを示せ.
(2)$A=a_1A+b_1E,\ A^2=a_2A+b_2E$となる実数$a_1,\ b_1,\ a_2,\ b_2$を求めよ.
(3)$n=1,\ 2,\ 3,\ \cdots$に対して,$A^n=a_nA+b_nE$となる実数$a_n,\ b_n$を$n$を用いて表せ.
(4)$n=1,\ 2,\ 3,\ \cdots$に対して,実数$c_n,\ d_n$が
\[ A+A^2+A^3+\cdots +A^n=c_nA+d_nE \]
を満たしているとき,極限$\displaystyle \lim_{n \to \infty}\frac{c_n}{d_n}$を求めよ.
神戸大学 国立 神戸大学 2013年 第4問
$a,\ b$を実数とする.次の問いに答えよ.

(1)$f(x)=a \cos x+b$が,
\[ \int_0^\pi f(x) \, dx=\frac{\pi}{4}+\int_0^\pi \{f(x)\}^3 \, dx \]
をみたすとする.このとき,$a,\ b$がみたす関係式を求めよ.
(2)(1)で求めた関係式をみたす正の数$b$が存在するための$a$の条件を求めよ.
九州大学 国立 九州大学 2013年 第1問
$a>1$とし,$2$つの曲線
\[ \begin{array}{lll}
y=\sqrt{x} & & (x \geqq 0), \\
\displaystyle y=\frac{a^3}{x} & & (x>0)
\end{array} \]
を順に$C_1,\ C_2$とする.また,$C_1$と$C_2$の交点$\mathrm{P}$における$C_1$の接線を$\ell_1$とする.以下の問いに答えよ.

(1)曲線$C_1$と$y$軸および直線$\ell_1$で囲まれた部分の面積を$a$を用いて表せ.
(2)点$\mathrm{P}$における$C_2$の接線と直線$\ell_1$のなす角を$\theta(a)$とする$\displaystyle \left( 0<\theta(a)<\frac{\pi}{2} \right)$.このとき,$\displaystyle \lim_{a \to \infty}a \sin \theta(a)$を求めよ.
九州大学 国立 九州大学 2013年 第2問
一辺の長さが1の正方形$\mathrm{OABC}$を底面とし,点$\mathrm{P}$を頂点とする四角錐$\mathrm{POABC}$がある.ただし,点$\mathrm{P}$は内積に関する条件$\displaystyle \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OP}}=\frac{1}{4}$,および$\displaystyle \overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OP}}=\frac{1}{2}$をみたす.辺$\mathrm{AP}$を$2:1$に内分する点を$\mathrm{M}$とし,辺$\mathrm{CP}$の中点を$\mathrm{N}$とする.さらに,点$\mathrm{P}$と直線$\mathrm{BC}$上の点$\mathrm{Q}$を通る直線$\mathrm{PQ}$は,平面$\mathrm{OMN}$に垂直であるとする.このとき,長さの比$\mathrm{BQ}:\mathrm{QC}$,および線分$\mathrm{OP}$の長さを求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。