タグ「分数」の検索結果

224ページ目:全4648問中2231問~2240問を表示)
名古屋大学 国立 名古屋大学 2013年 第2問
$x>0$とし,$f(x)=\log x^{100}$とおく.

(1)次の不等式を証明せよ.
\[ \frac{100}{x+1}<f(x+1)-f(x)<\frac{100}{x} \]
(2)実数$a$の整数部分($k \leqq a<k+1$となる整数$k$)を$[a]$で表す.整数$[f(1)]$,$[f(2)]$,$[f(3)]$,$\cdots$,$[f(1000)]$のうちで異なるものの個数を求めよ.必要ならば$\log 10=2.3026$として計算せよ.
大阪大学 国立 大阪大学 2013年 第1問
三角関数の極限に関する公式
\[ \lim_{x \to 0}\frac{\sin x}{x}=1\]
を示すことにより,$\sin x$の導関数が$\cos x$であることを証明せよ.
大阪大学 国立 大阪大学 2013年 第1問
$xy$平面において,点$(x_0,\ y_0)$と直線$ax+by+c=0$の距離は
\[ \frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}} \]
である.これを証明せよ.
大阪大学 国立 大阪大学 2013年 第2問
$1$個のさいころを$3$回投げる試行において,$1$回目に出る目を$a$,$2$回目に出る目を$b$,$3$回目に出る目を$c$とする.

(1)$\log_{\frac{1}{4}}(a+b)>\log_{\frac{1}{2}}c$となる確率を求めよ.
(2)$2^a+2^b+2^c$が$3$の倍数となる確率を求めよ.
名古屋大学 国立 名古屋大学 2013年 第1問
$3$人でジャンケンをする.各人はグー,チョキ,パーをそれぞれ$\displaystyle \frac{1}{3}$の確率で出すものとする.負けた人は脱落し,残った人で次回のジャンケンを行い(アイコのときは誰も脱落しない),勝ち残りが$1$人になるまでジャンケンを続ける.このとき各回の試行は独立とする.$3$人でジャンケンを始め,ジャンケンが$n$回目まで続いて$n$回目終了時に$2$人が残っている確率を$p_n$,$3$人が残っている確率を$q_n$とおく.

(1)$p_1,\ q_1$を求めよ.
(2)$p_n,\ q_n$がみたす漸化式を導き,$p_n,\ q_n$の一般項を求めよ.
(3)ちょうど$n$回目で$1$人の勝ち残りが決まる確率を求めよ.
名古屋大学 国立 名古屋大学 2013年 第1問
$3$人でジャンケンをする.各人はグー,チョキ,パーをそれぞれ$\displaystyle \frac{1}{3}$の確率で出すものとする.負けた人は脱落し,残った人で次回のジャンケンを行い(アイコのときは誰も脱落しない),勝ち残りが$1$人になるまでジャンケンを続ける.このとき各回の試行は独立とする.$3$人でジャンケンを始め,ジャンケンが$n$回目まで続いて$n$回目終了時に$2$人が残っている確率を$p_n$,$3$人が残っている確率を$q_n$とおく.

(1)$p_1,\ q_1$を求めよ.
(2)$p_n,\ q_n$がみたす漸化式を導き,$p_n,\ q_n$の一般項を求めよ.
(3)ちょうど$n$回目で$1$人の勝ち残りが決まる確率を求めよ.
岡山大学 国立 岡山大学 2013年 第1問
曲線$\displaystyle y=|x-\displaystyle\frac{1|{x}} \ (x>0)$と直線$y=2$で囲まれた領域の面積$S$を求めよ.
岡山大学 国立 岡山大学 2013年 第4問
$C$を$xy$平面上の放物線$y=x^2$とする.不等式$y<x^2$で表される領域の点$\mathrm{P}$から$C$に引いた$2$つの接線に対して,それぞれの接点の$x$座標を$\alpha,\ \beta \ (\alpha<\beta)$とする.また,$2$つの接線と$C$で囲まれた部分の面積を$S$とする.このとき,以下の問いに答えよ.ただし,等式
\[ \int_p^q (x-p)^2 \, dx=\frac{(q-p)^3}{3} \]
を用いてもよい.

(1)点$\mathrm{P}$の座標$(a,\ b)$を$\alpha,\ \beta$を用いて表せ.
(2)$\displaystyle S=\frac{(\beta-\alpha)^3}{12}$を示せ.
(3)点$\mathrm{P}$が曲線$y=x^3-1 \ (-1 \leqq x \leqq 1)$上を動くとき,$(\beta-\alpha)^2$の値の範囲を調べよ.さらに,$S$の最大値および最小値を与える点$\mathrm{P}$の座標を求めよ.
岡山大学 国立 岡山大学 2013年 第2問
行列$A=\left( \begin{array}{cc}
a & -b \\
b & a
\end{array} \right)$で定まる座標平面上の$1$次変換を$f$とする.ただし,$a,\ b$は実数とする.このとき,以下の問いに答えよ.

(1)原点$\mathrm{O}$とは異なる点$\mathrm{P}(x,\ y)$を$f$で移した点を$\mathrm{Q}$とする.このとき,長さの比の値$\displaystyle \frac{\mathrm{OQ}}{\mathrm{OP}}$は$\mathrm{P}$によらないことを示し,その値を$a,\ b$を用いて表せ.
(2)正の整数$n$に対して,$A^n=\left( \begin{array}{cc}
p_n & q_n \\
r_n & s_n
\end{array} \right)$とするとき,
\[ p_n^2+r_n^2=(a^2+b^2)^n,\quad q_n^2+s_n^2=(a^2+b^2)^n \]
が成り立つことを示せ.
(3)$109^2=l^2+m^2$を満たす正の整数$l,\ m$を一組求めよ.
広島大学 国立 広島大学 2013年 第1問
$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$とする.座標平面上で原点$\mathrm{O}$を通り傾きが$\tan \theta$の直線を$\ell$とし,行列
\[ \left( \begin{array}{cc}
\cos^2 \theta & \sin \theta \cos \theta \\
\sin \theta \cos \theta & \sin^2 \theta
\end{array} \right) \]
の表す$1$次変換を$f$とする.座標平面上に$2$点$\mathrm{P},\ \mathrm{Q}$がある.次の問いに答えよ.

(1)線分$\mathrm{OP}$が直線$\ell$と垂直であるとき,$1$次変換$f$による点$\mathrm{P}$の像を求めよ.
(2)$1$次変換$f$による点$\mathrm{Q}$の像を$\mathrm{R}$とする.このとき$|\overrightarrow{\mathrm{OR}}| \leqq |\overrightarrow{\mathrm{OQ}}|$が成り立つことを示せ.さらに等号が成立する場合を調べよ.
(3)$1$次変換$f$による点$(1,\ 1)$の像を$\mathrm{S}$とする.このとき$|\overrightarrow{\mathrm{OS}}|$が最大となる$\theta$と最小となる$\theta$をそれぞれ求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。