タグ「分数」の検索結果

216ページ目:全4648問中2151問~2160問を表示)
首都大学東京 公立 首都大学東京 2014年 第3問
$f(x)=xe^{-x}$,$t>1$とするとき,以下の問いに答えなさい.

(1)曲線$y=f(x)$と直線$\displaystyle y=\frac{x}{t}$のすべての交点の座標を求めなさい.
(2)$(1)$のような$y=f(x)$と$\displaystyle y=\frac{x}{t}$で囲まれる部分の面積$S(t)$を求めなさい.
(3)$t$が$1$より大きい実数全体を動くとき,関数$\displaystyle g(t)=\frac{t}{\log t}(1-S(t))$の最小値を求めなさい.
首都大学東京 公立 首都大学東京 2014年 第3問
$xy$平面において,$x$軸の正の部分に中心$\mathrm{A}$をもつ半径$1$の円$C$が,直線$\displaystyle y=x \tan t (0<t<\frac{\pi}{2})$に点$\mathrm{P}$で接している.以下の問いに答えなさい.

(1)点$\mathrm{A}$と点$\mathrm{P}$の$x$座標を求めなさい.
(2)$x$軸の正の部分と円$C$と直線$y=x \tan t$で囲まれる部分を$x$軸のまわりに回転した立体の体積$V(t)$を求めなさい.
(3)極限値$\displaystyle \lim_{t \to +0}tV(t)$を求めなさい.
首都大学東京 公立 首都大学東京 2014年 第4問
大小二つのさいころを同時にふって,出た目の値をそれぞれ$a,\ b$とする.領域
\[ y \geqq -\frac{x}{2}+a \quad \text{かつ} \quad (x-b)^2+(y-b)^2 \leqq b^2 \]
の面積を$S$とする.ただし,空集合の面積は$0$とする.以下の問いに答えなさい.

(1)$\displaystyle S=\frac{\pi b^2}{2}$となる確率$p_1$を求めなさい.
(2)$S=0$となる確率$p_2$を求めなさい.
岡山県立大学 公立 岡山県立大学 2014年 第3問
次の問いに答えよ.

(1)体積が$V$,表面積が$S$,底面の半径が$r$の円柱を考える.

(i) $S$を$V$と$r$で表せ.
(ii) $V$の値を一定にするとき,$S$の最小値とそれを与える$r$の値を求めよ.

(2)$x>0$のとき$\displaystyle \log (1+x)>x-\frac{x^2}{2}$であることを示せ.
大阪府立大学 公立 大阪府立大学 2014年 第4問
$a$は正の定数とし,曲線$C_1:y=ax^2 (0 \leqq x \leqq 1)$と$\displaystyle C_2:y=\frac{1}{a}(x-1)^2 (0 \leqq x \leqq 1)$および$x$軸で囲まれる部分の面積を$S(a)$とする.

(1)$C_1$と$C_2$の交点の$x$座標を求めよ.
(2)$S(a)$を求めよ.
(3)$a$がすべての正の実数を動くとき,$S(a)$の最大値とそれを与える$a$の値を求めよ.
大阪府立大学 公立 大阪府立大学 2014年 第3問
$x \geqq 0$で定義された関数
\[ f_n(x)=x^a-x^{a+\frac{1}{n}} \]
を考える.ただし,$a$は正の実数とし,$n$は自然数とする.このとき,以下の問いに答えよ.

(1)区間$[0,\ 1]$において,$f_n(x)$の最大値を与える$x$の値を$x_n$とおく.$x_n$を求めよ.
(2)極限$\displaystyle \lim_{n \to \infty} x_n$を求めよ.
大阪府立大学 公立 大阪府立大学 2014年 第5問
$0<x \leqq 2\pi$において定義された関数$\displaystyle h(x)=\frac{\sin x}{x}$について,以下の問いに答えよ.

(1)$h(x)$の最小値を与える$x$がただ一つ存在することを示せ.
(2)$h(x)$の最小値を与える$x$の値を$b$とおく.次の定積分を求めよ.
\[ \int_\pi^b x^2h(x) \, dx \]
(3)$b$は$\displaystyle \frac{17}{12} \pi<b<\frac{3}{2} \pi$をみたすことを示せ.
大阪府立大学 公立 大阪府立大学 2014年 第1問
数直線上の座標$x$に点$\mathrm{P}$があるとき,表と裏がそれぞれ$\displaystyle \frac{1}{2}$の確率で出る硬貨$2$枚を$1$回投げて,点$\mathrm{P}$の位置を次のように決める.

$(ⅰ)$ $2$枚とも表が出たときは,座標$x+1$に移動する.
$(ⅱ)$ $2$枚とも裏が出たときは,座標$x-1$に移動する.
$(ⅲ)$ 表と裏が$1$枚ずつ出たときは,移動しない.

点$\mathrm{P}$の最初の位置を座標$0$とする.硬貨$2$枚を$5$回投げ終わったときに,点$\mathrm{P}$が次の位置にある確率をそれぞれ求めよ.

(1)座標$4$
(2)座標 $3$
(3)座標$0$
和歌山県立医科大学 公立 和歌山県立医科大学 2014年 第4問
曲線$y=x^2 (x>0)$を$C_1$とする.この$C_1$と$x$軸の両方に接し,半径が$\displaystyle \frac{1}{2}$の円を$C_2$とする.次の問いに答えよ.

(1)$C_2$の方程式を求めよ.
(2)$C_2$の外部において,$C_1$と$C_2$と$x$軸で囲まれた部分の面積$S$を求めよ.
九州歯科大学 公立 九州歯科大学 2014年 第1問
次の問いに答えよ.

(1)$\displaystyle 3-\sqrt{5}+\frac{m}{3-\sqrt{5}}=n$をみたす整数$m$と$n$の値を求めよ.
(2)$\displaystyle F(x)=\sum_{k=1}^{12} \{ \log (e^{2k}x^2+e^{-2k})-\log (e^{-2k}x^2+e^{2k}) \}$とおくとき,$\displaystyle \alpha=\lim_{x \to \infty} F(x)$と$\displaystyle \beta=\lim_{x \to 0} F(x)$の値を求めよ.ただし,$e$は自然対数の底である.
(3)$2$つの関数$f(x)$と$g(x)$が$f(0)=-6$,$g(0)=2$,$g(x)>0$,$g^\prime(x)=f^\prime(x)+4x+3$,$\displaystyle f^\prime(x)=\frac{f(x)g^\prime(x)}{g(x)}-2xg(x)$をみたすとき,$\displaystyle g(x)=\frac{ax}{x^2+4}+b$となる定数$a$と$b$を求めよ.ただし,$f^\prime(x)$と$g^\prime(x)$はそれぞれ$f(x)$と$g(x)$の導関数である.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。