タグ「分数」の検索結果

208ページ目:全4648問中2071問~2080問を表示)
東京理科大学 私立 東京理科大学 2014年 第1問
白,赤,黄,緑の$4$色に光るライトがある.はじめ,ライトの色は白であり,$1$分経過するごとに,次のルールでライトの色が変わるものとする.ただし,ライトの色が白のときについては$n=0,\ 1,\ 2,\ \cdots$,それ以外の色のときについては$n=1,\ 2,\ \cdots$とする.

(i) $n$分後に白のとき,$n+1$分後ではそれぞれ$\displaystyle \frac{1}{3}$の確率で赤,黄,緑になる.
(ii) $n$分後に赤のとき,$n+1$分後ではそれぞれ$\displaystyle \frac{1}{3}$の確率で白,黄,緑になる.
(iii) $n$分後に黄のとき,$n+1$分後ではそれぞれ$\displaystyle \frac{1}{3}$の確率で白,赤,緑になる.
\mon[$\tokeishi$] $n$分後に緑のとき,$n+1$分後ではそれぞれ$\displaystyle \frac{1}{3}$の確率で白,赤,黄になる.

$n$を自然数とし,$n$分後にライトの色が白である確率を$P_n$,また,$n$分後にライトの色が赤である確率を$Q_n$とする.

(1)$\displaystyle P_2=\frac{[ア]}{[イ]},\ Q_2=\frac{[ウ]}{[エ]}$である.

(2)$P_n$および$Q_n$についての漸化式を利用すると,自然数$n$に対して,$n$が$3$以上のとき,


$\displaystyle P_n=\frac{[オ]}{[カ]} \left( [キ]-{\left( -\frac{[ク]}{[ケ]} \right)}^{n-1} \right)$

$\displaystyle Q_n=\frac{[コ]}{[サ]} \left( [シ]+\frac{[ス]}{[セ]} {\left( -\frac{[ソ]}{[タ]} \right)}^{n-1} \right)$


である.
東京理科大学 私立 東京理科大学 2014年 第4問
次の$[ ]$内にあてはまる$0$から$9$までの数字を求めよ.

次の曲線と直線について考える.ただし,$a,\ b,\ c,\ d$は実数で,$a>0$,$b$は$0$でないとする.

$C:y=ax^2+bx+c$
$\ell_1:y=x$
$\displaystyle \ell_2:y=-\frac{1}{b}x-d$

$C$は,$x$軸と点$\mathrm{P}$で接し,$\ell_1$と点$\mathrm{Q}$で接する.$\ell_2$は点$\mathrm{P}$を通るものとする.また,$\ell_1$と$\ell_2$の交点を$\mathrm{R}$とする.

(1)$\displaystyle b=\frac{[リ]}{[ル]},\ ac=\frac{[レ]}{[ロ][ワ]}$
(2)$2$直線$\ell_1,\ \ell_2$と曲線$C$で囲まれる図形の面積が$2$であるとき,
\[ a=\frac{[ヲ]}{[ン]},\quad d=[あ] \]
である.
(3)このときの点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の座標はそれぞれ,
\[ \mathrm{P} (-[い],\ 0),\quad \mathrm{Q}([う],\ [う]),\quad \mathrm{R} \left( -\frac{[え]}{[お]},\ -\frac{[え]}{[お]} \right) \]
である.
東京理科大学 私立 東京理科大学 2014年 第1問
放物線$y=x^2$上の$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2) (0 \leqq a<b)$に対して,$L(a,\ b)$を線分$\mathrm{AB}$の長さとし,$S(a,\ b)$を線分$\mathrm{AB}$と放物線$y=x^2$で囲まれた図形の面積とする.さらに,$T(a,\ b)$を$a \leqq x \leqq b$の範囲で放物線$y=x^2$と$x$軸で囲まれた図形の面積とする.

(1)$(ⅰ)$ $\displaystyle L(0,\ t)=\frac{1}{2}L(0,\ 1)$となるのは,$\displaystyle t^2=\frac{1}{[ア]}(\sqrt{[イ]}-[ウ])$となるときである.
$(ⅱ)$ $L(0,\ t)=L(t,\ 1)$となるのは,$\displaystyle t=\frac{1}{[エ]}(\sqrt{[オ]}-[カ])$のときである.
(2)$(ⅰ)$ $\displaystyle S(0,\ t)=\frac{1}{2}S(0,\ 2)$となるのは,$\displaystyle \log_2 t=\frac{[キ]}{[ク]}$となるときである.

$(ⅱ)$ $T(t,\ 2)=S(0,\ 2)$となるのは,$\displaystyle \log_2 t=\frac{[ケ]}{[コ]}$となるときである.
東京理科大学 私立 東京理科大学 2014年 第2問
$k$を定数として,$3$次方程式
\[ x^3-\frac{3}{2}x^2-6x-k=0 \cdots\cdots (*) \]
を考える.

(1)この方程式が,異なる$3$つの実数解をもつような$k$の値の範囲は
\[ -[ア][イ]<k< \frac{[ウ]}{[エ]} \cdots\cdots (**) \]
である.
(2)$k$が$(**)$の範囲にあるとき,方程式$(*)$の$3$つの解を$\alpha,\ \beta,\ \gamma$(ただし$\alpha<\beta<\gamma$)とおく.

(i) $k$が$(**)$の範囲を動くとき,$\alpha,\ \beta,\ \gamma$の取りうる値の範囲は,それぞれ
\[ -\frac{[オ]}{[カ]}<\alpha<-[キ],\quad -[ク]<\beta<[ケ],\quad [コ]<\gamma<\frac{[サ]}{[シ]} \]
である.
(ii) $k$が$(**)$の範囲を動くとき,$\alpha$と$\gamma$の積$\alpha\gamma$が最小となるのは
\[ k=-\frac{[ス][セ][ソ]}{[タ][チ]} \]
のときであって,$\alpha\gamma$の最小値は$\displaystyle -\frac{[ツ][テ][ト]}{[ナ][ニ]}$である.
東京理科大学 私立 東京理科大学 2014年 第3問
$\mathrm{O}$を原点とする$xyz$空間の$x$軸上,$y$軸上,$z$軸上にそれぞれ点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,$\mathrm{AB}=3$,$\mathrm{AC}=2$であるという.そのとき,$\mathrm{BC}=a$とおき,三角形$\mathrm{ABC}$の面積を$S$とおく.

(1)$a$の取りうる値の範囲は
\[ \sqrt{[ア]} \leqq a \leqq \sqrt{[イ][ウ]} \]
である.
(2)$(ⅰ)$ $\displaystyle \cos \angle \mathrm{BAC}=\frac{1}{[エ][オ]}(-a^2+[カ][キ])$である.
$(ⅱ)$ $\displaystyle S^2=\frac{1}{[ク][ケ]}(-a^4+[コ][サ]a^2-[シ][ス])$である.
(3)$\mathrm{OA}=x$とおいて,$S^2$を$x$を用いて表すと
\[ S^2=-\frac{[セ]}{[ソ]}x^4+[タ] \]
となる.
(4)$S=2 \sqrt{2}$のとき,四面体$\mathrm{OABC}$に内接する球(すなわち,中心がこの四面体の内部にあって,すべての面と$1$点のみを共有する球)の半径を$r$とおく.

(i) $\displaystyle r=\frac{\sqrt{[チ]}}{1+[ツ] \sqrt{[テ]}+\sqrt{[ト][ナ]}}$である.

(ii) $r=[ニ] \sqrt{[チ]}-[ヌ] \sqrt{[テ]}+[ネ] \sqrt{[ト][ナ]}-[ノ]$となる.
東京理科大学 私立 東京理科大学 2014年 第4問
$r$は$2$以上$9$以下の自然数とする.$n$を$r$以上の自然数として,次の条件を満たす$n$桁の自然数を考える.

(i) 各位の数は$1$から$r$までの数$1,\ 2,\ \cdots,\ r$のどれかである.
(ii) $1,\ 2,\ \cdots,\ r$のどの一つも必ずどこかの位に現れる.

このような自然数全体の集合を考え,この集合の要素の個数を$_r \mathrm{S}_n$とおく.また,この集合のすべての要素の和を$f_r(n)$とおく.

(1)$r=2$とする.

(i) $_2 \mathrm{S}_2=[ア]$,$_2 \mathrm{S}_3=[イ]$である.

一般に,$_2 \mathrm{S}_n={[ウ]}^n-[エ]$である.

(ii) $f_2(2)=[オ][カ]$,$f_2(3)=[キ][ク][ケ]$である.

一般に,$\displaystyle f_2(n)=\frac{[コ]}{[サ]}({[シ][ス]}^n-1) \cdot {_2 \mathrm{S}_n}$が成り立つ.

(2)$r=3$とする.

(i) $_3 \mathrm{S}_n={[セ]}^n-[ソ] \cdot {[ウ]}^n+[タ]$である.

(ii) $f_3(n)=\frac{[チ]}{[ツ]}({[シ][ス]}^n-1) \cdot {}_3 \mathrm{S}_n$が成り立つ.

(3)$r=4$とする.

(i) $_4 \mathrm{S}_n={[テ]}^n-[ト] \cdot {[セ]}^n+[ナ] \cdot {[ウ]}^n-[ニ]$である.

(ii) $f_4(n)=\frac{[ヌ]}{[ネ][ノ]}({[シ][ス]}^n-1) \cdot {}_4 \mathrm{S}_n$が成り立つ.
立教大学 私立 立教大学 2014年 第3問
$a>0$とする.座標平面上に$2$つの放物線$C_1:y=x^2-2x+2$と$\displaystyle C_2:y=-\frac{1}{2}x^2+ax-\frac{3}{2}$がある.放物線$C_1$上の点$\mathrm{P}(2,\ 2)$を通り,点$\mathrm{P}$での接線に直交する直線を$\ell$とする.このとき,次の問に答えよ.

(1)直線$\ell$の方程式を求めよ.
(2)$2$つの放物線$C_1,\ C_2$が共有点をもたないとき,$a$の値の範囲を求めよ.
(3)直線$\ell$が放物線$C_2$に接しているとき,$a$の値と接点の座標を求めよ.
(4)$a$を$(3)$で求めた値としたとき,直線$\ell$と放物線$C_1,\ C_2$および$y$軸で囲まれる部分の面積を$S$とする.$S$の値を求めよ.
立教大学 私立 立教大学 2014年 第3問
座標平面上に放物線$\displaystyle y=x^2+\frac{1}{16}$と円$x^2+y^2-3y+1=0$がある.このとき,次の問に答えよ.

(1)円の中心の座標と半径を求めよ.
(2)円の中心と円周上の点$\displaystyle \left( \frac{1}{2},\ \frac{1}{2} \right)$を通る直線の傾きを求めよ.
(3)円周上の点$\displaystyle \left( \frac{1}{2},\ \frac{1}{2} \right)$における円の接線の方程式を求めよ.
(4)$(3)$で求めた接線と放物線のすべての交点の座標を求めよ.
(5)$(3)$で求めた接線と放物線で囲まれた部分の面積を求めよ.
立教大学 私立 立教大学 2014年 第3問
$2$次関数$f(x)$は,$\displaystyle \int_y^{y+2} f(x) \, dx=2y^2+4y+2$を満たすとする.このとき,次の問に答えよ.

(1)$f(x)$を求めよ.
(2)数列$\{a_n\}$を
\[ \int_1^{n+1} f(x) \, dx=\sum_{k=1}^n a_k \quad (n=1,\ 2,\ 3,\ \cdots) \]
となるように定める.数列$\{a_n\}$の一般項を$n$を用いて表せ.
(3)$(2)$で求めた数列$\{a_n\}$について,
\[ \sum_{k=1}^m ka_k \quad (m=1,\ 2,\ 3,\ \cdots) \]
を$m$を用いて表せ.ただし因数分解された形で解答すること.
(4)$(2)$で求めた数列$\{a_n\}$について,
\[ \sum_{k=1}^m \frac{1}{a_k} \quad (m=1,\ 2,\ 3,\ \cdots) \]
を$m$を用いて表せ.
北里大学 私立 北里大学 2014年 第2問
$\{a_n\}$を次の条件によって定められる数列とする.
\[ a_1=1,\quad \frac{1}{a_{n+1}}-\frac{1}{a_n}=n+1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とする.

(1)$a_{30}$の値は$[エ]$であり,$S_{40}$の値は$[オ]$である.
(2)$\displaystyle b_n=\frac{S_n}{2}+\frac{2}{S_n}$とし,数列$\{b_n\}$の初項から第$n$項までの和を$T_n$とする.このとき,$T_{50}$の値は$[カ]$である.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。