タグ「分数」の検索結果

204ページ目:全4648問中2031問~2040問を表示)
東京女子大学 私立 東京女子大学 2014年 第2問
実数$t$に対して$\displaystyle f(t)=\frac{t+|t|}{2}$とおく.このとき座標平面において不等式
\[ \frac{1}{4}x^2-1 \leqq y \leqq f(2-x^2) \]
が表す領域を図示し,その面積を求めよ.
東京女子大学 私立 東京女子大学 2014年 第8問
$\displaystyle f(x)=\frac{1}{e^x+1}-\frac{1}{3}$として$\displaystyle F(x)=\int_0^x f(t) \, dt$の最大値とそのときの$x$の値を求めよ.
玉川大学 私立 玉川大学 2014年 第1問
$[ア]$~$[ツ]$を埋めよ.

(1)次を計算せよ.
\[ 3+\frac{1}{3+\displaystyle\frac{1}{3+\displaystyle\frac{1}{3}}}=\frac{[アイウ]}{[エオ]},\quad 3 \times 2 \div 3^{-1}=[カキ] \]
(2)空欄を埋めよ.
\[ \frac{\sqrt{2}+2i}{1-\sqrt{2}i}=-\frac{\sqrt{[ク]}}{[ケ]}+\frac{[コ]}{[サ]}i \]
(3)$\mathrm{A}$君と,$\mathrm{A}$君の姉の年齢の和は$28$,積は$180$である.$\mathrm{A}$君の年齢は$[シス]$歳,姉の年齢は$[セソ]$歳である.
(4)$\log_8 x+\log_8 (x+2) \geqq 1$を解くと
\[ x \geqq [タ] \]
である.
(5)曲線$y=x^2$上の点$(1,\ 1)$における接線の方程式は$y=[チ]x-[ツ]$である.
玉川大学 私立 玉川大学 2014年 第2問
$[ア]$~$[タ]$を埋めよ.

(1)$\displaystyle \sin x=\frac{\sqrt{5}-1}{2}$のとき$\sin 5x+\sin 3x$の値は
\[ \sin 5x+\sin 3x=[ア] \sin [イ]x \cos x \]
を用いれば
\[ [ウエ] \sqrt{[オ]}-[カキ] \]
である.
(2)三角形$\mathrm{ABC}$において,辺$\mathrm{AB}$を$m:n$に内分する点を$\mathrm{P}$,辺$\mathrm{AC}$を$n:m$に内分する点を$\mathrm{Q}$とする.ただし,$m \neq n$かつ$m$と$n$の最大公約数は$1$である.このとき$\displaystyle t=\frac{m}{m+n}$とおくと
\[ \overrightarrow{\mathrm{PQ}}=-t \overrightarrow{\mathrm{AB}}+([ク]-t) \overrightarrow{\mathrm{AC}} \]
である.いま,$2$直線$\mathrm{PQ}$,$\mathrm{BC}$の交点を$\mathrm{R}$として,点$\mathrm{Q}$が線分$\mathrm{PR}$の中点であるならば
\[ \overrightarrow{\mathrm{AR}}=-t \overrightarrow{\mathrm{AB}}+[ケ] ([コ]-t) \overrightarrow{\mathrm{AC}} \]
となるから
\[ m:n=[サ]:[シ] \]
である.
(3)数字$1,\ 2,\ 3,\ 4,\ 5$を使って$5$桁の整数を作る.その中で,数字の並べ方を逆にしたものをもとの整数に加えると,どの桁の数字も偶数になるものは
\[ [スセ] \]
個ある.
(4)曲線$y=x^2-x$と$x$軸の囲む部分の面積は$\displaystyle \frac{[ソ]}{[タ]}$である.
名城大学 私立 名城大学 2014年 第1問
次の問について,答えを$[ ]$に記入せよ.

(1)$\displaystyle \tan 2\alpha=\frac{1}{2}$かつ$\tan \alpha>0$のとき,$\tan \alpha=[ア]$であり,また$\tan 3\alpha=[イ]$である.
(2)$r>0$に対し,中心$(-2,\ 7)$,半径$r^2+3r+4$の円$C_1$と中心$(3,\ -5)$,半径$2r^2+7r+1$の円$C_2$を考える.$C_1$と$C_2$がちょうど$3$本の共通接線をもつとき$r=[ウ]$であり,$C_1$と$C_2$が平行な共通接線をもつとき$r=[エ]$である.
名城大学 私立 名城大学 2014年 第2問
$\triangle \mathrm{ABC}$は$\angle \mathrm{ABC}=\theta$,$\mathrm{AB}=1$,$\mathrm{BC}=a$とする($\theta$は$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲にある定数とし,$a$は正の実数とする).また,$\triangle \mathrm{ABC}$の外接円の半径を$r$とする.次の問に答えよ.

(1)線分$\mathrm{AC}$の長さを$a$と$\theta$を用いて表せ.
(2)$r$を$a$と$\theta$を用いて表せ.
(3)$r$が最小となるとき,$a$を$\theta$を用いて表せ.また,そのときの$r$の値を求めよ.
名城大学 私立 名城大学 2014年 第1問
次の問について,答えを$[ ]$に記入せよ.

(1)$x=3+\sqrt{5}$,$y=3-\sqrt{5}$のとき,$4x^2+3xy+4y^2=[ア]$,$\displaystyle \frac{y}{x}+\frac{x}{y}=[イ]$である.
(2)関数$f(x)=-x^2+8x+c (2 \leqq x \leqq 5)$の最小値が$1$のとき,$c=[ウ]$である.また,そのときの$f(x)$の最大値は$[エ]$である.
(3)放物線$C_1:y=(x-p)^2+q$が放物線$C_2:y=-x^2$に接するとき,$p,\ q$の満たす条件は$[オ]$である.これより,$p$がすべての実数値をとって変わるとき,$C_1$の頂点が描く軌跡は放物線であり,その方程式は$[カ]$である.
(4)放物線$C:y=x^2+x$と直線$\ell_1:y=-x$との$2$つの交点のうち,原点ではない交点の$x$座標を$x_0$とすると,$x_0=[キ]$である.$C$と$\ell_1$によって囲まれた部分の面積を$S_1$とし,$C$,$\ell_1$および直線$\ell_2:x=-4$によって囲まれた部分の面積を$S_2$とするとき,$S_1+S_2=[ク]$である.
上智大学 私立 上智大学 2014年 第1問
次の問いに答えよ.

(1)関数$f(x)$を
\[ f(x)=\int_0^1 |(x-1)(x-t)| \, dt \]
とする.
$x \leqq [ア]$,$x \geqq [イ]$のとき,
\[ f(x)=[ウ]x^2+\frac{[エ]}{[オ]}x+\frac{[カ]}{[キ]} \]
$[ア]<x<[イ]$のとき,
\[ f(x)=[ク]x^3+[ケ]x^2+\frac{[コ]}{[サ]}x+\frac{[シ]}{[ス]} \]
である.また,関数$f(x)$は$x=[セ]$のとき,最小値$[ソ]$をとる.
(2)自然数$m,\ n$が
\[ \frac{1}{m}+\frac{1}{n}<\frac{1}{3} \]
を満たすとき,$\displaystyle \frac{1}{m}+\frac{1}{n}$の最大値は$\displaystyle \frac{[タ]}{[チ]}$である.
上智大学 私立 上智大学 2014年 第3問
$a \geqq 0$とし
\[ S(a)=\int_0^1 |x^2+2ax+a^2-1| \, dx \]
とおく.

(1)$\displaystyle a=\frac{1}{2}$のとき$\displaystyle S(a)=\frac{[ホ]}{[マ]}$である.
(2)等式
\[ S(a)=\int_0^1 (x^2+2ax+a^2-1) \, dx \]
が成り立つ$a$の範囲は$a \geqq [ミ]$である.
(3)$a \geqq [ミ]$のとき
\[ S(a)=[ム]a^2+[メ]a+\frac{[モ]}{[ヤ]} \]
であり,$0 \leqq a<[ミ]$のとき
\[ S(a)=\frac{[ユ]}{[ヨ]}a^3+[ラ]a^2+[リ]a+\frac{[ル]}{[レ]} \]
である.
(4)$S(a)$は$\displaystyle a=\frac{[ロ]+\sqrt{[ワ]}}{[ヲ]}$のとき最小値をとる.
武庫川女子大学 私立 武庫川女子大学 2014年 第1問
次の空欄$[$1$]$~$[$24$]$にあてはまる数字を記入せよ.ただし,空欄$[$21$]$には,$+$または$-$の記号が入る.

(1)$a_1=m$(ただし,$m>0$),$a_{n+1}-a_n=-4$(ただし,$n$は自然数)で定められる数列$\{a_n\}$がある.
$a_n=m-[$1$](n-[$2$])$であり,
$S_n=\sum_{k=1}^n a_k$とすると,$n$が$\displaystyle \frac{m+[$3$]}{[$4$]}$に最も近い整数であるとき,$S_n$は最大値をとる.
したがって,ある$m$の値について,$S_n$が,$n=10$で最大となるとき,とり得る$m$の値の範囲は$[$5$][$6$] \leqq m \leqq [$7$][$8$]$であり,$m=[$7$][$8$]$のとき,$S_{10}=[$9$][$10$][$11$]$である.
(2)$\angle \mathrm{AOB}$を直角とする直角三角形$\mathrm{OAB}$がある.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.線分$\mathrm{AB}$を$3:1$に内分する点を$\mathrm{P}$とし,$3:1$に外分する点を$\mathrm{Q}$とし,$\mathrm{BP}=1$とする.

(i) $\displaystyle \overrightarrow{\mathrm{OP}}=\frac{[$12$]}{[$13$]} \overrightarrow{a}+\frac{[$14$]}{[$13$]} \overrightarrow{b}$,$\displaystyle \overrightarrow{\mathrm{OQ}}=-\frac{[$15$]}{[$16$]} \overrightarrow{a}+\frac{[$17$]}{[$16$]} \overrightarrow{b}$であり,
$|\overrightarrow{\mathrm{OQ}}|=[$18$]|\overrightarrow{\mathrm{OP}}|$である.
(ii) $\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{AB}}=0$であるとき,$|\overrightarrow{b}|=[$19$]$であり,$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OQ}}=[$20$]$である.
(iii) $\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{AB}}=0$であるとき,$\overrightarrow{\mathrm{OR}}=2 \overrightarrow{b}$,$\overrightarrow{\mathrm{OR}}$と$\overrightarrow{\mathrm{RA}}$のなす角を$\theta$とすると,
$\displaystyle \cos \theta=[$21$] \frac{[$22$] \sqrt{[$23$]}}{[$24$]}$である.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。