タグ「分数」の検索結果

201ページ目:全4648問中2001問~2010問を表示)
東北学院大学 私立 東北学院大学 2014年 第5問
$\displaystyle \left( \sqrt{7}x^2+\frac{1}{49} \right)^{50}$の展開式について,次の問いに答えよ.

(1)$x^{96}$の係数を$a \times 7^b$の形に表せ.ただし,$a,\ b$は自然数とし,$a$は$7$の倍数でないとする.
(2)係数が自然数になる項の個数を求めよ.
獨協医科大学 私立 獨協医科大学 2014年 第1問
次の問いに答えなさい.

(1)$a$を正の定数とし,$x$についての$2$つの不等式
$\log_3 (x+2a)+\log_3 (x+3a)<\log_3 10ax \cdots\cdots①$
$\log_3 (3x-4)+\log_3 (3x+2)<2 \log_9 (6x-5)+1 \cdots\cdots②$
を考える.
$①$の解は
\[ [ア]a<x<[イ]a \]
である.
$②$の解は
\[ \frac{[ウ]}{[エ]}<x<\frac{[オ]}{[カ]} \]
である.
$①,\ ②$をともに満たす実数$x$が存在するとき,$a$のとり得る値の範囲は
\[ \frac{[キ]}{[ク]}<a<\frac{[ケ]}{[コ]} \]
である.
(2)放物線$\displaystyle C:y=\frac{1}{2}x^2$上に$2$点$\mathrm{P}$,$\mathrm{Q}$がある.$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$p,\ q$としたとき,$p,\ q$は$q<p$を満たす整数で,$p>0$,$p+q$は正の偶数とする.
また,点$\mathrm{P}$における放物線$C$の接線を$\ell$,$2$点$\mathrm{P}$,$\mathrm{Q}$を通る直線を$m$とし,直線$\ell,\ m$が$x$軸の正の向きとなす角をそれぞれ$\displaystyle \alpha,\ \beta \left( 0<\alpha<\frac{\pi}{2},\ 0<\beta<\frac{\pi}{2} \right)$,$2$直線$\ell,\ m$のなす角を$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$とする.
$p=5,\ q=1$のとき
\[ \tan \alpha=[サ],\quad \tan \beta=[シ] \]
であり
\[ \tan \theta=\frac{1}{[ス]} \]
である.
また,$\displaystyle \tan \theta=\frac{1}{7}$を満たす整数$p,\ q$の組$(p,\ q)$をすべてあげると,
\[ (p,\ q)=([セ],\ [ソ]),\ ([タチ],\ [ツテ]),\ ([トナ],\ [ニヌネ]) \]
である.ただし,$[セ]<[タチ]<[トナ]$とする.
獨協医科大学 私立 獨協医科大学 2014年 第2問
$m$は正の整数とする.箱の中に,$1$と書かれたカードが$1$枚,$2$と書かれたカードが$2$枚,$3$と書かれたカードが$3$枚,$\cdots$,$2m$と書かれたカードが$2m$枚入っている.この箱の中から,$1$枚のカードを取り出し,書かれている数字を記録してからもとに戻す操作を$n$回繰り返す.

(1)箱の中にカードは全部で
\[ m([ア]m+[イ]) \text{枚} \]
入っている.
(2)$n=1$のとき,偶数のカードを取り出す確率は
\[ \frac{m+[ウ]}{[エ]m+[オ]} \]
である.
また,$n=2$のとき,記録した$2$個の数の和が偶数である確率は
\[ \frac{[カ]m^2+[キ]m+[ク]}{[ケ]m^2+[コ]m+[サ]} \]
である.
(3)記録した$n$個の数の和が偶数である確率を$p_n$とする.$p_n$を$m,\ n$を用いて表すと
\[ p_n=\frac{[シ]}{[ス]} \left( \frac{[セ]}{[ソ]m+[タ]} \right)^n+\frac{[チ]}{[ツ]} \]
である.
獨協医科大学 私立 獨協医科大学 2014年 第3問
空間に,同一直線上にない$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$があり,条件
\[ |\overrightarrow{\mathrm{OA}}|=2,\quad |\overrightarrow{\mathrm{OB}}|=1\,\quad \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=-1 \]
を満たしている.$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る平面を$\alpha$とし,$\alpha$上にない点$\mathrm{P}$を次の条件を満たすようにとる.
\[ \overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OA}}=2,\quad \overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OB}}=-1 \]
点$\mathrm{P}$から平面$\alpha$に下ろした垂線と$\alpha$との交点を$\mathrm{H}$とすると
\[ \overrightarrow{\mathrm{OH}}=\frac{[ア]}{[イ]} \overrightarrow{\mathrm{OA}}-\frac{[ウ]}{[エ]} \overrightarrow{\mathrm{OB}} \]
となる.$|\overrightarrow{\mathrm{OP}}|=p$とおくと,$\triangle \mathrm{OPH}$の面積は
\[ \frac{[オ]}{[カ]} \sqrt{[キ]p^2-[ク]} \]
と表される.

$\triangle \mathrm{OAB}$の面積が$\triangle \mathrm{OPH}$の面積の$2$倍に等しいとき
\[ p^2=\frac{[ケコ]}{[サシ]} \]
である.またこのとき,$\displaystyle \overrightarrow{\mathrm{PQ}}=\frac{5}{3} \overrightarrow{\mathrm{PO}}$を満たす点$\mathrm{Q}$をとると,四面体$\mathrm{QOAH}$の体積は
\[ \frac{\sqrt{[ス]}}{[セソ]} \]
である.
東北学院大学 私立 東北学院大学 2014年 第6問
$a_1=1$,$\displaystyle a_{n+1}=\left( 1-\frac{1}{n+1} \right)(3a_n-2)+2 (n=1,\ 2,\ 3,\ \cdots)$で定まる数列$\{a_n\}$について,次の問いに答えよ.

(1)数列$\{b_n\}$を$b_n=na_n (n=1,\ 2,\ 3,\ \cdots)$で定めるとき,$b_n$と$b_{n+1}$の関係式を求めよ.
(2)数列$\{a_n\}$の一般項を求めよ.
広島工業大学 私立 広島工業大学 2014年 第3問
数列$\{a_n\}$を
\[ a_1=1,\quad a_{n+1}=\left\{ \begin{array}{ll}
\displaystyle\frac{1}{2}a_n & (a_n \text{が偶数のとき}) \\
5a_n+5 \phantom{\frac{[ ]}{2}} & (a_n \text{が奇数のとき})
\end{array} \right. \]
で定める.このとき,次の問いに答えよ.

(1)$a_2,\ a_3,\ a_4,\ a_5,\ a_6,\ a_7,\ a_8,\ a_9$を求めよ.

(2)$\displaystyle \sum_{k=1}^{36} a_k$を求めよ.
広島工業大学 私立 広島工業大学 2014年 第4問
$a$を定数とする.直線$\ell:y=6ax$,曲線$C:y=|3x^2-6x|$について,次の問いに答えよ.

(1)$\ell$と$C$の共有点が$3$個になるような$a$の範囲を求めよ.
(2)$\displaystyle a=\frac{1}{2}$とし,$\ell$と$C$の共有点の$x$座標を小さい順に$x_1,\ x_2,\ x_3$とする.このとき,$\ell$と$C$で囲まれた部分のうち$x$座標が$x_2$以上の部分の面積を求めよ.
広島工業大学 私立 広島工業大学 2014年 第8問
白い玉が$3$個,黒い玉が$2$個,赤い玉が$1$個入った袋から,玉を取り出す.白い玉は$0$点,黒い玉は$1$個につき$1$点,赤い玉は$1$個につき$2$点がそれぞれ与えられる.$2$個の玉を同時に取り出したときに与えられる点の合計を得点とする.次の問いに答えよ.

(1)得点が$2$点である確率を求めよ.
(2)得点の期待値を求めよ.
(3)袋に白い玉を追加したら,得点の期待値が$\displaystyle \frac{4}{5}$になった.追加した白い玉の個数を求めよ.
獨協医科大学 私立 獨協医科大学 2014年 第4問
行列$A=r \left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$で表される$1$次変換$f$について考える.点$\mathrm{P}_0$の座標を$(1,\ 0)$とし,$n$を正の整数とするとき,$f$によって点$\mathrm{P}_{n-1}$が移される点を$\mathrm{P}_n$とする.また,$\displaystyle \sum_{k=0}^{n-1} \overrightarrow{\mathrm{OP}_k}=\overrightarrow{\mathrm{OQ}_n}$となる点$\mathrm{Q}_n$の座標を$(x_n,\ y_n)$とし,$n \to \infty$のときに$x_n,\ y_n$がともに収束する場合の点$\mathrm{Q}_n$の極限値$\displaystyle \mathrm{Q} \left( \lim_{n \to \infty} x_n,\ \lim_{n \to \infty} y_n \right)$を求めよう.

(1)$\displaystyle r=\frac{1}{2}$,$\displaystyle \theta=\frac{\pi}{3}$のとき,$\displaystyle A^3=\frac{[アイ]}{[ウ]} \left( \begin{array}{cc}
[エ] & [オ] \\
[オ] & [エ]
\end{array} \right)$であり,$\mathrm{P}_7$の座標は$\displaystyle \left( \frac{[カ]}{[キクケ]},\ \frac{\sqrt{[コ]}}{[キクケ]} \right)$である.
(2)$E-A$が逆行列をもたない$r,\ \theta (r \geqq 0,\ 0 \leqq \theta<2\pi)$の条件は,$r=[サ]$かつ$\theta=[シ]$である.ただし,$E$は単位行列とする.
$E-A$が逆行列をもつとき,$n$を$2$以上の整数とすると
$(E-A)(E+A+A^2+\cdots +A^{n-1})=E-A^n$より
\[ E+A+A^2+\cdots +A^{n-1}=(E-A)^{-1}(E-A^n) \]
また,$\displaystyle (E-A)^{-1}=\frac{1}{r^2-2r \cos \theta+1} \left( \begin{array}{cc}
1-r \cos \theta & -r \sin \theta \\
r \sin \theta & 1-r \cos \theta
\end{array} \right)$であるから
$\displaystyle (E-A)^{-1}(E-A^n)=\frac{1}{r^2-2r \cos \theta+1}T$とすると
\[ T=\left( \begin{array}{cc}
1-r \cos \theta-r^n [ス]+r^{n+1} [セ] & -r \sin \theta+r^n [ソ]-r^{n+1} [タ] \\
r \sin \theta-r^n [ソ]+r^{n+1} [タ] & 1-r \cos \theta-r^n [ス]+r^{n+1} [セ]
\end{array} \right) \]
である.ただし,$[ス]$,$[セ]$,$[ソ]$,$[タ]$には,次の$\nagamaruichi$~$\nagamaruroku$の中から最も適切なものをそれぞれ一つ選ぶこと.なお,同じ選択肢を選んでもよいものとする.
\[ \nagamaruichi \ \sin n\theta \quad \nagamaruni \ \cos n\theta \quad \nagamarusan \ \sin (n-1) \theta \quad \nagamarushi \ \cos (n-1) \theta \quad \nagamarugo \ \sin (n+1) \theta \quad \nagamaruroku \ \cos (n+1) \theta \]
$0 \leqq r<1$のとき,$\lim_{n \to \infty} x_n,\ \lim_{n \to \infty} y_n$はともに収束し,さらに$\displaystyle \theta=\frac{\pi}{3}$とすると,
\[ \mathrm{Q}=\left( \frac{[チ]-r}{[ツ]-2r+[テ]r^2},\ \frac{\sqrt{[ト]}r}{[ツ]-2r+[テ]r^2} \right) \]
である.
獨協医科大学 私立 獨協医科大学 2014年 第5問
関数$f(x)=2x+\cos x$がある.$xy$平面上の曲線$y=f(x)$の$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の部分を$C$とし,$C$と直線$y=2x$,および直線$x+2y=2$で囲まれた領域を$D$とする.領域$D$を直線$y=2x$の周りに$1$回転してできる立体の体積を求めよう.
(図は省略)

$C$上の点$\mathrm{P}(t,\ f(t))$から直線$y=2x$に下ろした垂線と直線$y=2x$との交点を$\mathrm{Q}$とする.
線分$\mathrm{PQ}$の長さは
\[ \frac{|\cos t|}{\sqrt{[ア]}} \]
であり,点$\mathrm{Q}$の$x$座標は
\[ t+\frac{[イ]}{[ウ]} \cos t \]
である.これから,$\mathrm{OQ}=s$とおくと
\[ s=\sqrt{[エ]} \left( t+\frac{[イ]}{[ウ]} \cos t \right) \]
である.
$f^\prime(x)=2-\sin x>0$なので$f(x)$は増加する.よって,求める体積$V$は

$\displaystyle V=\int_{\frac{2 \sqrt{5}}{5}}^{\frac{\sqrt{5} \pi}{2}} \pi \mathrm{PQ}^2 \, ds$

$\displaystyle \quad\, =\frac{\sqrt{[オ]} \pi}{[カ]} \int_0^{\frac{\pi}{2}} \left( \cos^2 t-\frac{[キ]}{[ク]} \cos^2 t \sin t \right) \, dt$

$\displaystyle \quad\, =\frac{\sqrt{[ケ]} \pi^2}{[コサ]}-\frac{[シ] \sqrt{[ス]} \pi}{[セソ]}$
である.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。