タグ「分数」の検索結果

198ページ目:全4648問中1971問~1980問を表示)
吉備国際大学 私立 吉備国際大学 2014年 第3問
$-2 \leqq t \leqq 2$のとき$x=t^2+t=f(t)$とする.

(1)$x$の値域を求めよ.
(2)$y=g(x)=-x^2+3x+1$の値域を求めよ.
(3)$\displaystyle z=h(y)=\frac{1}{2}y^2-4y$の値域を求めよ.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2014年 第3問
曲線$\displaystyle C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 (a>b>0)$と,正の定数$m$がある.このとき,以下の問いに答えなさい.

(1)傾きが$m$となる$C$の接線を$2$本求めなさい.
(2)直線$y=mx$と$C$の交点の座標を$\mathrm{P}$および$\mathrm{Q}$とするとき,$\mathrm{P}$,$\mathrm{Q}$それぞれの座標を求めなさい.ただし,$\mathrm{P}$の$x$座標は正の値とする.
(3)$(1)$で求めた$2$本の接線および,$(2)$の点$\mathrm{P}$,$\mathrm{Q}$それぞれにおける$C$の接線とで囲まれた図形の面積を求めなさい.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2014年 第4問
$a,\ b$は$1$と異なる正の実数で,$ab \neq 1$,$\displaystyle \frac{a}{b} \neq 1$を満たすものとする.
\[ \text{不等式} \quad \log_{ab}a<\log_{\frac{a}{b}} ab \quad \cdots\cdots① \]
について,以下の問いに答えなさい.

(1)$X=\log_a b$とおくとき,$①$を$X$についての不等式で表すと,
\[ \frac{[$1$]}{(1+X)(1-X)}<0 \]
となる.$[$1$]$にあてはまる適切な式を求めなさい.
(2)不等式$①$を満たす点$(a,\ b)$の存在する領域を,座標平面上に図示しなさい.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2014年 第1問
以下の設問の$[ ]$に答えなさい.

(1)$a$を$1$より大きな実数,$e$を自然対数の底とし,$f(x)=a^x \log_e a$とする.このとき,曲線$y=f(x)$,直線$x=10$,$x$軸および$y$軸で囲まれた部分の面積$S$を$a$を用いた式で表すと,$S=[$1$]$となる.
(2)$\displaystyle \sin x-\cos x=\frac{1}{2}$(ただし,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$)のとき,$\sin^4 x-\cos^4 x$の値を求めると$[$2$]$となる.
(3)数列$\{a_n\}$を初項$2$,公差$7$の等差数列,数列$\{b_n\}$を初項$1$,公比$2$の等比数列とし,数列$\{c_n\}$の第$n$項を$c_n=a_nb_n (n=1,\ 2,\ 3,\ \cdots)$と定義する.数列$\{c_n\}$の初項から第$n$項までの和$S_n$を$n$を用いた式で表すと,$S_n=[$3$]$となる.また,$S_n=133132$となるのは$n=[$4$]$のときである.
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
以下の問いに答えなさい.

(1)下図のような口の半径が$10 \, \mathrm{cm}$,高さが$30 \, \mathrm{cm}$の口の開いた逆円すい形の容器を,口が水平になるように置き,水を入れた.水面の面積が$36 \pi \, \mathrm{cm}^2$であるとき,水の体積は$[$1$][$2$][$3$] \pi \, \mathrm{cm}^3$であり,容器の内面で水に接していない部分の面積は,水に接している部分の面積の$\displaystyle \frac{[$4$][$5$]}{[$6$]}$倍である.
(図は省略)
(2)次の数列を考える.
\[ 1,\ \frac{1}{3},\ \frac{1}{3},\ \frac{1}{3},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{27},\ \cdots \]
この数列の第$670$項は$\displaystyle \frac{1}{[$7$][$8$][$9$]}$,初項から第$2182$項までの和は
\[ \frac{\kakkofour{$10$}{$11$}{$12$}{$13$}}{[$14$][$15$][$16$]} \]
である.
(3)次の連立方程式を満たす実数の組$(x,\ y)$をすべて求めなさい.
\[ \left\{ \begin{array}{l}
-9x^2+4x+3y^2=0 \\
3xy-5y=0
\end{array} \right. \]
慶應義塾大学 私立 慶應義塾大学 2014年 第2問
放物線$p_1:y=x^2-4x+5$と,その上の点$\mathrm{P}(4,\ 5)$を考える.

(1)傾きが$-2$で,放物線$p_1$に接する直線$\ell$の方程式は
\[ y=-2x+[$17$] \]
であり,放物線$p_1$と直線$\ell$の接点$\mathrm{Q}$の座標は$([$18$],\ [$19$])$である.
(2)$2$点$\mathrm{P}$,$\mathrm{Q}$を通り,頂点の$y$座標が$6$であるような放物線の方程式は
\[ y=-x^2+[$20$]x-[$21$] \]
または
\[ y=-\frac{1}{[$22$]}(x^2-[$23$][$24$]x-[$25$]) \]
である.
$(2)$で求めた放物線のうち,方程式$y=-x^2+[$20$]x-[$21$]$で定まるものを$p_2$とし,放物線$p_2$の頂点を$\mathrm{R}$とする.
(3)$\displaystyle \cos \angle \mathrm{PRQ}=\frac{\sqrt{[$26$][$27$]}}{[$28$][$29$]}$であり,三角形$\mathrm{PQR}$の面積は$[$30$]$である.
(4)$2$つの放物線$p_1$と$p_2$で囲まれた図形の面積は$[$31$]$である.
同志社大学 私立 同志社大学 2014年 第3問
曲線$\displaystyle C:y=(\log x)^2+\frac{3}{4} (x>0)$について,以下の問いに答えよ.

(1)$\displaystyle \frac{dy}{dx},\ \frac{d^2y}{dx^2}$を求めよ.また,$\displaystyle \frac{dy}{dx}>0$となる$x$の範囲を求めよ.
(2)曲線$C$の接線で原点$(0,\ 0)$を通るものを求めよ.
(3)曲線$C$の概形と$(2)$で求めた接線を描け.
(4)$(2)$で求めた接線の中で傾きが最大のものと曲線$C$との接点を$\mathrm{P}$とする.点$\mathrm{P}$の座標を求めよ.
(5)$(4)$で求めた点$\mathrm{P}$を通り$x$軸に平行な直線と曲線$C$で囲まれた図形の面積$S$を求めよ.
慶應義塾大学 私立 慶應義塾大学 2014年 第3問
$1$辺の長さが$1$の正六角形$\mathrm{ABCDEF}$を考える.

(1)$\mathrm{CD}$の中点を$\mathrm{P}$,$\mathrm{EF}$の中点を$\mathrm{Q}$,$\mathrm{AP}$と$\mathrm{BE}$の交点を$\mathrm{R}$とするとき,


$\displaystyle \overrightarrow{\mathrm{AP}}=[$32$] \overrightarrow{\mathrm{AB}}+\frac{[$33$]}{[$34$]} \overrightarrow{\mathrm{AF}}$,

$\displaystyle \overrightarrow{\mathrm{BQ}}=-\frac{[$35$]}{[$36$]} \overrightarrow{\mathrm{AB}}+\frac{[$37$]}{[$38$]} \overrightarrow{\mathrm{AF}}$,

$\displaystyle \overrightarrow{\mathrm{CR}}=-\overrightarrow{\mathrm{AB}}-\frac{[$39$]}{[$40$]} \overrightarrow{\mathrm{AF}}$


と表せる.
(2)$|k \overrightarrow{\mathrm{BQ}}+\overrightarrow{\mathrm{CR}}|$が最小になるような実数$k$の値は$\displaystyle -\frac{[$41$]}{[$42$]}$であり,そのときの$|k \overrightarrow{\mathrm{BQ}}+\overrightarrow{\mathrm{CR}}|$の最小値は$\displaystyle \frac{\sqrt{[$43$][$44$]}}{[$45$]}$となる.
(3)直線$\mathrm{AP}$と直線$\mathrm{ED}$の交点を$\mathrm{S}$とするとき,三角形$\mathrm{PQR}$の面積は三角形$\mathrm{DPS}$の面積の$\displaystyle \frac{[$46$][$47$]}{[$48$]}$倍である.
慶應義塾大学 私立 慶應義塾大学 2014年 第4問
$r>0$とする.座標平面上の原点以外の点に対し,$2$種類の移動$\mathrm{A}$,$\mathrm{B}$を以下のように定める.

移動$\mathrm{A} \ \cdots \ (r \cos \theta,\ r \sin \theta)$にある点が$\displaystyle \left( r \cos \left( \theta+\frac{\pi}{6} \right),\ r \sin \left( \theta+\frac{\pi}{6} \right) \right)$に動く.

移動$\mathrm{B} \ \cdots \ (r \cos \theta,\ r \sin \theta)$にある点が$((r+1) \cos \theta,\ (r+1) \sin \theta)$に動く.

(図は省略)
動点$\mathrm{K}$は点$(1,\ 0)$を出発し,上記$\mathrm{A}$,$\mathrm{B}$いずれかの移動をくり返しながら座標平面上を動くとする.

(1)動点$\mathrm{K}$が$\mathrm{B}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{B}$の順に$4$回の移動を行ったとき,到達する点の座標は$([$49$] \sqrt{[$50$]},\ [$51$])$である.
(2)動点$\mathrm{K}$が$7$回の移動で点$(0,\ 5)$に到達する経路は$[$52$][$53$]$通りあり,そのうち点$\displaystyle \left( \frac{3}{2},\ \frac{3 \sqrt{3}}{2} \right)$を{\bf 通らない}ものは$[$54$][$55$]$通りある.

以下,$p$を$0 \leqq p \leqq 1$を満たす定数とする.動点$\mathrm{K}$は各回の移動において,確率$p$で移動$\mathrm{A}$を,確率$1-p$で移動$\mathrm{B}$を行うものとする.

(3)動点$\mathrm{K}$が$5$回の移動で到達する点の座標が$(0,\ 3)$である確率$P$を,$p$を用いた式で表しなさい.
(4)動点$\mathrm{K}$が$3$回の移動で到達する点の$y$座標を$a$とするとき,$a^2$の期待値$E$を$p$を用いた式で表しなさい.
同志社大学 私立 同志社大学 2014年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)数列$\{a_n\}$が$a_1=1$,$a_{n+1}=4a_n+1$で与えられているとき,$a_2=[ア]$であり,その一般項は$a_n=[イ]$となる.また,$a_{n+2}-a_n$を$5$で割った余りは$[ウ]$である.ここで,$a_n$を$5$で割った余りを$b_n$とする.このとき,$b_4=[エ]$,$b_5=[オ]$であり,$\displaystyle \sum_{k=1}^{2n} a_kb_k=[カ]$である.
(2)座標平面において$1$次変換$f$による点$\mathrm{A}(2,\ 0)$の像は点$\mathrm{C}(4,\ 0)$であり,点$\mathrm{B}(0,\ 4)$の像も点$\mathrm{C}(4,\ 0)$であるとする.このとき,$f$による点$\mathrm{D}(3,\ 2)$の像は点$([キ],\ [ク])$である.次に,放物線上を動く点$\displaystyle \mathrm{P} \left( t,\ -\frac{1}{2} t^2+1 \right) (0 \leqq t \leqq 4)$の$f$による像を点$\mathrm{Q}$とする.点$\mathrm{Q}$の$x$座標の最大値は$[ケ]$であり,そのときの点$\mathrm{P}$の$x$座標は$[コ]$である.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。