タグ「分数」の検索結果

187ページ目:全4648問中1861問~1870問を表示)
金沢工業大学 私立 金沢工業大学 2014年 第3問
$m$を定数とする.$\mathrm{O}$を原点とする座標平面において,円$x^2+y^2=4$と直線$y=mx+4$が異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わっている.$2$点$\mathrm{A}$,$\mathrm{B}$の$x$座標をそれぞれ$\alpha,\ \beta$とする.

(1)$\displaystyle \alpha+\beta=\frac{[アイ] m}{[ウ]+m^2},\ \alpha\beta=\frac{[エオ]}{[ウ]+m^2}$である.
(2)$\displaystyle |\overrightarrow{\mathrm{AB}}|=\frac{[カ] \sqrt{m^2-[キ]}}{\sqrt{[ク]+m^2}}$である.
(3)$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=0$のとき,$m=\pm \sqrt{[ケ]}$,$|\overrightarrow{\mathrm{AB}}|=[コ] \sqrt{[サ]}$である.
金沢工業大学 私立 金沢工業大学 2014年 第4問
$a$を定数とする.関数$f(x)$を$\displaystyle f(x)=7x+\int_1^x (at+5) \, dt$,$f^\prime(1)=4$で定める.

(1)$f(1)=[シ]$である.
(2)$a=[スセ]$である.
(3)$f(x)=[ソタ]x^2+[チツ]x-[テ]$である.
(4)$f(x)$は$\displaystyle x=\frac{[ト]}{[ナ]}$で最大値$[ニ]$をとる.
龍谷大学 私立 龍谷大学 2014年 第1問
次の問いに答えなさい.

(1)次の連立不等式を解きなさい.
\[ \left\{ \begin{array}{l}
x^2+2x>1 \\
|x-1| \leqq 1
\end{array} \right. \]
(2)無限級数
\[ \sum_{n=1}^\infty \frac{1}{2^n} \sin \frac{n\pi}{2}=\frac{1}{2} \sin \frac{\pi}{2}+\frac{1}{2^2} \sin \frac{2\pi}{2}+\frac{1}{2^3} \sin \frac{3\pi}{2}+\cdots \]
の和を求めなさい.
(3)関数$f(x)=e^x \cos x$の導関数$f^\prime(x)$を求めなさい.また,実数$\alpha,\ \beta$を使って,$f^\prime(x)=\alpha e^x \cos (x+\beta)$の形に表しなさい.ただし,$\alpha>0$,$0 \leqq \beta<2\pi$とする.
龍谷大学 私立 龍谷大学 2014年 第2問
座標平面上の定点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(2,\ 1)$,$\mathrm{C}(2,\ 2)$,$\mathrm{D}(3,\ 3)$と動点$\mathrm{P}$を考える.$\mathrm{P}$は原点$\mathrm{O}(0,\ 0)$から出発する.表の出る確率が$\displaystyle \frac{1}{3}$,裏の出る確率が$\displaystyle \frac{2}{3}$のコインを投げ,そのたびに,表が出れば$x$軸の正方向に$1$,裏が出れば$y$軸の正方向に$1$だけ進む.コインを$6$回投げるとき,次の問いに答えなさい.

(1)$\mathrm{P}$が$\mathrm{D}$に達する確率を求めなさい.
(2)$\mathrm{P}$が$\mathrm{A}$,$\mathrm{B}$の両方を通過して$\mathrm{D}$に達する確率を求めなさい.
(3)$\mathrm{P}$が$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の少なくとも$1$つを通過して$\mathrm{D}$に達する確率を求めなさい.
大阪工業大学 私立 大阪工業大学 2014年 第3問
次の問いに答えよ.

(1)極限値$\displaystyle \lim_{\alpha \to 0} \frac{1-\cos \alpha}{\alpha^2}$を求めよ.
(2)$\alpha$を$0$でない実数とするとき,定積分$\displaystyle \int_0^2 (x+1) \cos (\alpha x) \, dx$を求めよ.
(3)$(2)$で求めた定積分の値を$I(\alpha)$とするとき,極限値$\displaystyle \lim_{\alpha \to 0}I(\alpha)$を求めよ.
金沢工業大学 私立 金沢工業大学 2014年 第6問
原点を$\mathrm{O}$とする座標平面上に点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ -1)$をとる.点$\displaystyle \left( \frac{1}{2},\ 0 \right)$を中心とする半径$\displaystyle \frac{1}{2}$の円$C$を考える.$C$上の点で,第$1$象限にある点を$\mathrm{P}$とし,$\angle \mathrm{POA}=\theta$とする.

(1)$\displaystyle \angle \mathrm{OPA}=\frac{\pi}{[ケ]}$であり,$\displaystyle \triangle \mathrm{POA}=\frac{1}{[コ]} \sin \theta \cos \theta$である.
(2)四辺形$\mathrm{OBAP}$の面積は$\displaystyle \frac{1}{[サ]}+\frac{1}{[シ]} \sin 2\theta$である.
(3)$\displaystyle \triangle \mathrm{POB}=\frac{1}{[ス]}+\frac{1}{[セ]} \cos 2\theta$である.
(4)$\triangle \mathrm{PBA}$の面積を$S$とすると,$\displaystyle S=\frac{1}{[ソ]}+\frac{\sqrt{[タ]}}{[チ]} \sin \left( 2\theta-\frac{\pi}{[ツ]} \right)$であり,$S$は$\displaystyle \theta=\frac{[テ]}{[ト]} \pi$で最大値$\displaystyle \frac{1+\sqrt{[ナ]}}{[ニ]}$をとる.
千葉工業大学 私立 千葉工業大学 2014年 第4問
$xy$平面上に放物線$\displaystyle C:y=\frac{1}{4}x^2+4$と点$\mathrm{P}(p,\ 0)$がある.ただし,$p \geqq 0$とする.$C$上の点$\displaystyle \left( p,\ \frac{1}{4}p^2+4 \right)$における$C$の接線を$\ell$とし,$\ell$に関して,$\mathrm{P}$と対称な点を$\mathrm{Q}(X,\ Y)$とするとき,次の問いに答えよ.

(1)$p=0$のとき,$\mathrm{Q}(0,\ [ア])$である.
(2)$\ell$の方程式は$\displaystyle y=\frac{p}{[イ]}x-\frac{[ウ]}{[エ]}p^2+[オ]$である.線分$\mathrm{PQ}$の中点が$\ell$上にあることから
\[ Y=\frac{p}{[カ]}X+[キ] \cdots\cdots (*) \]
が成り立つ.
(3)$p>0$のとき,$\mathrm{Q}$が,$\mathrm{P}$を通り$\ell$と直交する直線上にあることから
\[ Y=\frac{[クケ]}{p}X+[コ] \cdots\cdots (**) \]
が成り立つ.$(*)$と$(**)$から$p$を消去することにより
\[ X^2+Y^2-[サシ]Y+[スセ]=0 \]
が成り立つことがわかる.
(4)$X$の最小値は$[ソタ]$であり,このとき$p=[チ]$である.$p$が$0$から$[チ]$まで変化するとき,線分$\mathrm{PQ}$が通過する部分の面積は$\displaystyle \frac{[ツ]}{[テ]} \pi+\frac{[トナ]}{[ニ]}$である.
京都薬科大学 私立 京都薬科大学 2014年 第4問
実数$x$に対して,$x$を超えない最大整数を$[x]$で表すとする.例えば,$[2]=2$,$\displaystyle \left[ \frac{10}{3} \right]=3$である.次の$[ ]$のうち,$[オ]$と$[カ]$には式を,その他には整数を記入せよ.

(1)$[-5.2]=[ア]$となる.

(2)$\displaystyle \left[ \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}} \right]=[イ]$,$\displaystyle \left[ \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}} \right]=[ウ]$,

$\displaystyle \left[ \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}} \right]=[エ]$となる.

(3)不等式
\[ \frac{1}{\sqrt{k+1}+\sqrt{k}}<\frac{1}{2 \sqrt{k}}<\frac{1}{\sqrt{k}+\sqrt{k-1}} \]
の各辺を$k=2$から$k=n$まで,それぞれ加え合わせると,
\[ [オ]<\sum_{k=2}^n \frac{1}{\sqrt{k}}<[カ] \]
が得られる.ここで,$n$は$2$以上の整数とする.これにより,
\[ [キ] \times \sqrt{n}-[ク]-1<\sum_{k=1}^n \frac{1}{\sqrt{k}}<[キ] \times \sqrt{n}-[ク] \]
となる.よって,
\[ \left[ \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots +\frac{1}{\sqrt{9999}}+\frac{1}{\sqrt{10000}} \right]=[ケ] \]
である.
(4)同様にして,
\[ \left[ \frac{1}{\sqrt{100}}+\frac{1}{\sqrt{101}}+\frac{1}{\sqrt{102}}+\cdots +\frac{1}{\sqrt{9999}}+\frac{1}{\sqrt{10000}} \right]=[コ] \]
となる.
大阪薬科大学 私立 大阪薬科大学 2014年 第1問
次の問いに答えなさい.

(1)底面の半径が$2$で高さが$h$の円錐の体積と,半径$3$の球の体積が等しいとき,$h=[$\mathrm{A]$}$である.
(2)$2$次方程式$x^2+5x+5=0$の$2$つの解を$\alpha,\ \beta$とする.このとき,$\displaystyle \frac{1}{\alpha}+\frac{1}{\beta}$の値は$[$\mathrm{B]$}$である.
(3)成功する確率が$\displaystyle \frac{1}{2}$の実験を$5$回繰り返すとき,$5$回目の実験がちょうど$3$度目の成功となる確率は$[$\mathrm{C]$}$である.ただし,どの実験の結果も他の実験の結果に影響を及ぼさないとする.
(4)$1$辺の長さが$6$の正四面体$\mathrm{ABCD}$において,辺$\mathrm{BC}$を$1:5$に内分する点を$\mathrm{P}$とするとき,$\cos \angle \mathrm{APD}=[$\mathrm{D]$}$である.
(5)$\theta$が$0 \leqq \theta \leqq 2\pi$の範囲を動くとき,関数
\[ f(\theta)=(1+2 \cos \theta)(3-\cos 2\theta) \]
の最大値と最小値を求めなさい.
金沢工業大学 私立 金沢工業大学 2014年 第1問
次の関数を考える.

$f_1(x)=x$,$f_2(x)=x+1$,$f_3(x)=x-1$,$f_4(x)=x^2-1 (x \leqq 0)$,
$\displaystyle f_5(x)=\frac{1}{1-x}$,$\displaystyle f_6(x)=\frac{x}{1-x}$,$\displaystyle f_7(x)=\frac{x}{x+1}$,$\displaystyle f_8(x)=\sqrt{x+1}$,
$f_9(x)=-\sqrt{x+1}$

(1)${f_4}^{-1}(x)=f_{[ア]}(x)$であり,${f_6}^{-1}(x)=f_{[イ]}(x)$である.
(2)$(f_2 \circ f_3)(x)=f_{[ウ]}(x)$,$(f_3 \circ f_5)(x)=f_{[エ]}(x)$であり,
$(f_2 \circ f_{[エ]})(x)=f_{[オ]}(x)$である.
(3)合成関数$y=(f_6 \circ f_9)(x)$の定義域は$x \geqq [カキ]$であり,値域は$[クケ]<y \leqq [コ]$である.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。