タグ「分数」の検索結果

176ページ目:全4648問中1751問~1760問を表示)
宮崎大学 国立 宮崎大学 2014年 第2問
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人がそれぞれある地域の東公園,西公園および北公園のいずれかに行こうとしている.この$3$人は次のように,硬貨の表裏によって,どの公園に行くのかを決める.
\begin{itemize}
$\mathrm{A}$は手持ちの硬貨を$1$枚投げて,表が出たら東公園に行く.裏が出たら西公園に行く.
$\mathrm{B}$は手持ちの硬貨を$1$枚投げて,表が出たら西公園に行く.裏が出たら,もう$1$度その硬貨を投げて,表が出たら東公園に行き,裏が出たら北公園に行く.
$\mathrm{C}$は手持ちの硬貨を$1$枚投げて,表が出たら北公園に行く.裏が出たら,もう$1$度その硬貨を投げて,表が出たら東公園に行き,裏が出たら西公園に行く.
\end{itemize}
ただし,$3$人が使用する硬貨は,表,裏がそれぞれ$\displaystyle \frac{1}{2}$の確率で出るものとする.このとき,次の各問に答えよ.

(1)$\mathrm{A}$と$\mathrm{B}$が同じ公園に行く確率を求めよ.ただし,$\mathrm{C}$はどの公園に行ってもよいものとする.
(2)$\mathrm{B}$と$\mathrm{C}$が同じ公園に行く確率を求めよ.ただし,$\mathrm{A}$はどの公園に行ってもよいものとする.
(3)$3$人が同じ公園に行く確率を求めよ.
(4)少なくとも$2$人が同じ公園に行く確率を求めよ.
長崎大学 国立 長崎大学 2014年 第4問
次の問いに答えよ.

(1)$\displaystyle -\frac{\pi}{2}<x<\frac{\pi}{2}$のとき,$\tan x=t$とおく.$\cos 2x$と$\displaystyle \frac{dx}{dt}$を$t$で表せ.

(2)$\displaystyle \int_0^{\frac{\pi}{4}} \frac{\tan x}{2-\cos 2x} \, dx$を求めよ.

(3)関数$\displaystyle y=\frac{e^x-e^{-x}}{2}$の逆関数を求めよ.

(4)$\displaystyle x=\frac{e^t-e^{-t}}{2}$とおくことにより,$\displaystyle \int \frac{dx}{\sqrt{x^2+1}}$を求めよ.
長崎大学 国立 長崎大学 2014年 第4問
次の問いに答えよ.

(1)$\displaystyle -\frac{\pi}{2}<x<\frac{\pi}{2}$のとき,$\tan x=t$とおく.$\cos 2x$と$\displaystyle \frac{dx}{dt}$を$t$で表せ.

(2)$\displaystyle \int_0^{\frac{\pi}{4}} \frac{\tan x}{2-\cos 2x} \, dx$を求めよ.

(3)関数$\displaystyle y=\frac{e^x-e^{-x}}{2}$の逆関数を求めよ.

(4)$\displaystyle x=\frac{e^t-e^{-t}}{2}$とおくことにより,$\displaystyle \int \frac{dx}{\sqrt{x^2+1}}$を求めよ.
長崎大学 国立 長崎大学 2014年 第2問
$1$から$2n$までの偶数の平方の和を$a_n$,奇数の平方の和を$b_n$とする.すなわち
\[ a_n=2^2+4^2+\cdots +(2n)^2,\quad b_n=1^2+3^2+\cdots +(2n-1)^2 \]
である.なお,$1$から$n$までの自然数の平方の和については
\[ 1^2+2^2+\cdots +n^2=\frac{n(n+1)(2n+1)}{6} \]
が成り立つ.次の問いに答えよ.

(1)偶数の平方の和$2^2+4^2+\cdots +20^2$と奇数の平方の和$1^2+3^2+\cdots +19^2$を求めよ.
(2)$a_n$と$b_n$を求めよ.

(3)$\displaystyle \frac{1}{a_n}-\frac{3}{2n(2n+1)}$および$\displaystyle \frac{1}{b_n}+\frac{3}{2n(2n+1)}$を計算せよ.

(4)$\displaystyle c_n=\frac{1}{a_n}+\frac{1}{b_n}$とするとき,$S_n=c_1+c_2+\cdots +c_n$を求めよ.
長崎大学 国立 長崎大学 2014年 第4問
区間$0 \leqq x \leqq \pi$において,関数$f(x)$と関数$g(x)$を
\[ f(x)=\frac{1}{2} \cos x,\quad g(x)=\cos \frac{x}{2}+c \]
と定義する.$c$は定数である.次の問いに答えよ.

(1)区間$0 \leqq x \leqq \pi$において,$2$曲線$y=f(x)$と$y=g(x)$が$x=0$以外の点で接するように$c$の値を定め,接点$(p,\ q)$を求めよ.また,そのとき,区間$0 \leqq x \leqq \pi$における関数$f(x)$と関数$g(x)$の大小関係を調べよ.
(2)定数$c$と接点$(p,\ q)$は$(1)$で求めたものとする.そのとき,区間$0 \leqq x \leqq p$において,$y$軸および$2$曲線$y=f(x)$,$y=g(x)$によって囲まれた図形を$D$とする.$D$を$y$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
長崎大学 国立 長崎大学 2014年 第2問
$1$から$2n$までの偶数の平方の和を$a_n$,奇数の平方の和を$b_n$とする.すなわち
\[ a_n=2^2+4^2+\cdots +(2n)^2,\quad b_n=1^2+3^2+\cdots +(2n-1)^2 \]
である.なお,$1$から$n$までの自然数の平方の和については
\[ 1^2+2^2+\cdots +n^2=\frac{n(n+1)(2n+1)}{6} \]
が成り立つ.次の問いに答えよ.

(1)偶数の平方の和$2^2+4^2+\cdots +20^2$と奇数の平方の和$1^2+3^2+\cdots +19^2$を求めよ.
(2)$a_n$と$b_n$を求めよ.

(3)$\displaystyle \frac{1}{a_n}-\frac{3}{2n(2n+1)}$および$\displaystyle \frac{1}{b_n}+\frac{3}{2n(2n+1)}$を計算せよ.

(4)$\displaystyle c_n=\frac{1}{a_n}+\frac{1}{b_n}$とするとき,$S_n=c_1+c_2+\cdots +c_n$を求めよ.
長崎大学 国立 長崎大学 2014年 第2問
$1$から$2n$までの偶数の平方の和を$a_n$,奇数の平方の和を$b_n$とする.すなわち
\[ a_n=2^2+4^2+\cdots +(2n)^2,\quad b_n=1^2+3^2+\cdots +(2n-1)^2 \]
である.なお,$1$から$n$までの自然数の平方の和については
\[ 1^2+2^2+\cdots +n^2=\frac{n(n+1)(2n+1)}{6} \]
が成り立つ.次の問いに答えよ.

(1)偶数の平方の和$2^2+4^2+\cdots +20^2$と奇数の平方の和$1^2+3^2+\cdots +19^2$を求めよ.
(2)$a_n$と$b_n$を求めよ.

(3)$\displaystyle \frac{1}{a_n}-\frac{3}{2n(2n+1)}$および$\displaystyle \frac{1}{b_n}+\frac{3}{2n(2n+1)}$を計算せよ.

(4)$\displaystyle c_n=\frac{1}{a_n}+\frac{1}{b_n}$とするとき,$S_n=c_1+c_2+\cdots +c_n$を求めよ.
愛媛大学 国立 愛媛大学 2014年 第2問
次の問いに答えよ.

(1)すべての実数$x$に対して
\[ f(x)=\sin \pi x+\int_0^1 tf(t) \, dt \]
が成り立つような関数$f(x)$を求めよ.
(2)次の極限値を求めよ.
\[ \lim_{\theta \to 0} \frac{\theta^3}{\tan \theta-\sin \theta} \]
(3)次の極限値を求めよ.
\[ \lim_{n \to \infty} \sum_{k=n+1}^{2n} \frac{1}{k} \]
(4)関数$f(x)=|x| (e^x+a)$は$x=0$において微分可能であるとする.このとき,定数$a$の値を求めよ.
愛媛大学 国立 愛媛大学 2014年 第1問
$n$を$0$以上の整数とする.点$\mathrm{P}$,$\mathrm{Q}$は,$1$辺の長さが$1$である正四面体$\mathrm{ABCD}$の頂点の上を,以下の条件$(\mathrm{a})$,$(\mathrm{b})$を満たしながら移動する.

\mon[$(\mathrm{a})$] 時刻$t=0$において,点$\mathrm{P}$は頂点$\mathrm{A}$に,点$\mathrm{Q}$は頂点$\mathrm{B}$にいる.
\mon[($\mathrm{b})$] 時刻$t=n+1$において,点$\mathrm{P}$と点$\mathrm{Q}$は各々,時刻$t=n$のときにいた頂点から,他の$3$つの頂点のいずれかに,それぞれ$\displaystyle \frac{1}{3}$の確率で移動する.

時刻$t=n$における点$\mathrm{P}$と点$\mathrm{Q}$の間の距離を$d_n$とおく.$d_n$の値は$0$または$1$である.時刻$t=n$において$d_n=1$となる確率を$p_n$とする.

(1)時刻$t=1$とする.

(i) 点$\mathrm{P}$が頂点$\mathrm{C}$にいるとき,$d_1=1$となる点$\mathrm{Q}$の位置は何通りか.
(ii) 点$\mathrm{P}$が頂点$\mathrm{B}$にいるとき,$d_1=1$となる点$\mathrm{Q}$の位置は何通りか.

(2)$p_1$を求めよ.
(3)$d_1+d_2=1$となる確率を求めよ.
(4)$p_{n+1}$を$p_n$で表し,$p_n$を求めよ.
愛媛大学 国立 愛媛大学 2014年 第4問
$n$を$0$以上の整数とする.点$\mathrm{P}$,$\mathrm{Q}$は,$1$辺の長さが$1$である正四面体$\mathrm{ABCD}$の頂点の上を,以下の条件$(\mathrm{a})$,$(\mathrm{b})$を満たしながら移動する.

\mon[$(\mathrm{a})$] 時刻$t=0$において,点$\mathrm{P}$は頂点$\mathrm{A}$に,点$\mathrm{Q}$は頂点$\mathrm{B}$にいる.
\mon[($\mathrm{b})$] 時刻$t=n+1$において,点$\mathrm{P}$と点$\mathrm{Q}$は各々,時刻$t=n$のときにいた頂点から,他の$3$つの頂点のいずれかに,それぞれ$\displaystyle \frac{1}{3}$の確率で移動する.

時刻$t=n$における点$\mathrm{P}$と点$\mathrm{Q}$の間の距離を$d_n$とおく.$d_n$の値は$0$または$1$である.時刻$t=n$において$d_n=1$となる確率を$p_n$とする.

(1)時刻$t=1$とする.

(i) 点$\mathrm{P}$が頂点$\mathrm{C}$にいるとき,$d_1=1$となる点$\mathrm{Q}$の位置は何通りか.
(ii) 点$\mathrm{P}$が頂点$\mathrm{B}$にいるとき,$d_1=1$となる点$\mathrm{Q}$の位置は何通りか.

(2)$p_1$を求めよ.
(3)$d_1+d_2=1$となる確率を求めよ.
(4)$p_{n+1}$を$p_n$で表し,$p_n$を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。