タグ「分数」の検索結果

174ページ目:全4648問中1731問~1740問を表示)
お茶の水女子大学 国立 お茶の水女子大学 2014年 第2問
次の問いに答えよ.

(1)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$において
\[ \frac{2}{\pi}x \leqq \sin x \leqq x \]
が成り立つことを示せ.
(2)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$において,$D_1$を曲線$y=\sin x$と$2$直線$y=x$,$\displaystyle x=\frac{\pi}{2}$で囲まれた図形とし,$D_2$を曲線$y=\sin x$と直線$\displaystyle y=\frac{2}{\pi}x$で囲まれた図形とする.$D_1$,$D_2$の面積を求め,どちらの面積が大きいか調べよ.
(3)$D_2$を$x$軸のまわりに$1$回転させてできる回転体の体積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2014年 第3問
$\triangle \mathrm{ABC}$が与えられているとする.以下の問いに答えよ.

(1)辺$\mathrm{AB}$上の点$\mathrm{P}$,辺$\mathrm{AC}$上の点$\mathrm{Q}$が,それぞれ$\mathrm{AP}:\mathrm{PB}=s:1-s$,$\mathrm{AQ}:\mathrm{QC}=t:1-t$と辺$\mathrm{AB}$,$\mathrm{AC}$を内分するように与えられているとする(即ち$0<s<1$,$0<t<1$とする).直線$\mathrm{PQ}$が$\triangle \mathrm{ABC}$の重心を通るための必要十分条件は$3st=s+t$であることを示せ.
(2)直線$\ell$を$\triangle \mathrm{ABC}$の重心を通る直線とする.$\ell$によって,$\triangle \mathrm{ABC}$はふたつの図形(三角形と四角形,またはふたつの三角形)に分割される.これらの図形の面積のうち,大きい方を$S_1$,小さい方を$S_2$とする.ただし,面積が等しい場合も同じ記号を用い,$S_1=S_2$とする.

(i) $\ell$が$\triangle \mathrm{ABC}$のいずれかの頂点を通ることは$S_1=S_2$となるための必要十分条件であることを示せ.
(ii) $\displaystyle \frac{S_1}{S_2}$の最大値と最小値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2014年 第3問
次の問いに答えよ.

(1)関数$\displaystyle y=\frac{\log x}{x} (x>0)$の増減を調べ,そのグラフの概形を描け.ただし,$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}=0$は証明なく用いて良い.
(2)異なる自然数$m,\ n$の組で
\[ m^n=n^m \]
を満たすものをすべて求めよ.
(3)曲線$\displaystyle y=\frac{\log x}{x}$と直線$\displaystyle y=\frac{\log 2}{2}$で囲まれた図形の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2014年 第4問
自然数$l,\ m,\ n$に対し,
\[ f(l,\ m,\ n)=\frac{1}{l}+\frac{1}{m}+\frac{1}{n} \]
とする.

(1)$l+m+n=10$のとき,$f(l,\ m,\ n)$の値の最小値と最大値を求めよ.
(2)方程式$f(l,\ m,\ n)=a$の解となる自然数$l,\ m,\ n$の組で$l \leqq m \leqq n$を満たすものが$2$つ以上存在するような$a$の例を挙げ,そのような自然数の組を$2$つ求めよ.
(3)$\displaystyle \frac{11}{12}<f(l,\ m,\ n)<1$を満たす自然数$l,\ m,\ n$の組で$l \leqq m \leqq n$を満たすものをすべて求めよ.
和歌山大学 国立 和歌山大学 2014年 第1問
数列$\{a_n\}$,$\{b_n\}$が,$a_n=\sqrt{2n+1}-\sqrt{2n-1}$,$\displaystyle b_n=\frac{1}{\sqrt{2n-1}}$で定められている.このとき,次の問いに答えよ.

(1)$n \geqq 1$に対して,$b_{n+1}<a_n<b_n$が成り立つことを示せ.
(2)$\displaystyle 8<\sum_{k=1}^{40} b_k<9$が成り立つことを示せ.
和歌山大学 国立 和歌山大学 2014年 第4問
曲線$C:y=e^x$上の点$\mathrm{P}$,$\mathrm{Q}$における接線をそれぞれ$\ell,\ m$とする.$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\log t$,$\log 2t$とし,曲線$C$と直線$\ell,\ m$で囲まれた部分の面積を$S$とする.また,$\ell,\ m$の傾きをそれぞれ$\tan \alpha$,$\tan \beta$とする.ただし,$t>0$,$\displaystyle -\frac{\pi}{2}<\alpha<\frac{\pi}{2}$,$\displaystyle -\frac{\pi}{2}<\beta<\frac{\pi}{2}$である.このとき,次の問いに答えよ.

(1)$\tan \alpha,\ \tan \beta$および$S$をそれぞれ$t$を用いて表せ.
(2)$\beta-\alpha$が最大となるときの$t$の値を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2014年 第1問
四面体$\mathrm{ABPQ}$は$\mathrm{AP}=\mathrm{AQ}=3$,$\mathrm{BP}=\mathrm{BQ}=2 \sqrt{2}$,$\displaystyle \mathrm{PQ}=\frac{12}{5}$,$\displaystyle \angle \mathrm{APB}=\frac{\pi}{4}$を満たすとする.点$\mathrm{P}$から直線$\mathrm{AB}$に下ろした垂線を$\mathrm{PH}$とする.

(1)線分$\mathrm{PH}$の長さを求めよ.
(2)$\angle \mathrm{PHQ}$の大きさを$\theta$とする.$\sin \theta$の値を求めよ.
(3)$2$つのベクトル$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{PQ}}$は垂直であることを証明せよ.
(4)四面体$\mathrm{ABPQ}$の体積を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2014年 第2問
次の問いに答えよ.

(1)$x>0$のとき,不等式$2-x<(2+x)e^{-x}$が成り立つことを証明せよ.
(2)定積分$\displaystyle \int_0^{\frac{1}{2}} (2-x) \, dx$および$\displaystyle \int_0^{\frac{1}{2}} (2+x)e^{-x} \, dx$の値を求めよ.
(3)$(1)$と$(2)$を用いて,不等式$\displaystyle \frac{3}{5}<e^{-\frac{1}{2}}<\frac{17}{28}$が成り立つことを証明せよ.
鳥取大学 国立 鳥取大学 2014年 第2問
実数$a,\ b,\ \theta$に対して,行列$A,\ R$を以下のように定める.
\[ A=\left( \begin{array}{cc}
a & -b \\
b & a
\end{array} \right),\quad R=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right) \]
また$xy$平面内の相異なる$2$点$\mathrm{P}_0(p_x,\ p_y)$および$\mathrm{Q}_0(q_x,\ q_y)$を考える.$0$以上の整数$n$に対し,行列$A^n$の表す$1$次変換による点$\mathrm{P}_0$,$\mathrm{Q}_0$の像をそれぞれ$\mathrm{P}_n$,$\mathrm{Q}_n$とし,$2$点$\mathrm{P}_n$,$\mathrm{Q}_n$間の距離を$D_n$とする.ただし$A^0$は単位行列とする.

(1)$D_0$を$p_x,\ p_y,\ q_x,\ q_y$を用いて表せ.
(2)正の実数$s$に対して,$sR=A$が成り立つとき,$s$を$a,\ b$を用いて表せ.
(3)$D_n$と$D_0$の比$\displaystyle \frac{D_n}{D_0}$を$a,\ b$を用いて表せ.
鳥取大学 国立 鳥取大学 2014年 第3問
$1$以上の整数$p,\ q$に対し,$\displaystyle B(p,\ q)=\int_0^1 x^{p-1}(1-x)^{q-1} \, dx$とおく.次の問いに答えよ.

(1)$B(p,\ q)=B(q,\ p)$が成り立つことを示せ.
(2)関係式
\[ B(p,\ q+1)=\frac{q}{p} B(p+1,\ q) \qquad B(p+1,\ q)+B(p,\ q+1)=B(p,\ q) \]
が成り立つことを示せ.
(3)関係式
\[ B(p+1,\ q)=\frac{p}{p+q} B(p,\ q) \qquad B(p,\ q+1)=\frac{q}{p+q} B(p,\ q) \]
が成り立つことを示せ.
(4)$B(5,\ 4)$を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。