タグ「分数」の検索結果

161ページ目:全4648問中1601問~1610問を表示)
三重大学 国立 三重大学 2014年 第4問
関数$\displaystyle f(x)=\sin \left( \frac{3}{2}x \right)+\frac{3}{4}x$と$\displaystyle g(x)=\frac{3}{4}x$について,以下の問いに答えよ.ただし,$0 \leqq x \leqq \pi$とする.

(1)$f(x)$の増減,凹凸を調べ,極値を求めよ.また,$y=f(x)$のグラフをかけ.
(2)$y=f(x)$と$y=g(x)$のグラフの共有点を求めよ.
(3)$y=f(x)$と$y=g(x)$のグラフで囲まれた図形を,$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
三重大学 国立 三重大学 2014年 第4問
関数$\displaystyle f(x)=\sin \left( \frac{3}{2}x \right)+\frac{3}{4}x$と$\displaystyle g(x)=\frac{3}{4}x$について,以下の問いに答えよ.ただし,$0 \leqq x \leqq 2\pi$とする.

(1)$y=f(x)$と$y=g(x)$のグラフの共有点を求めよ.
(2)$y=f(x)$と$y=g(x)$のグラフで囲まれた図形を,$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
徳島大学 国立 徳島大学 2014年 第1問
次の問いに答えよ.

(1)関数$\displaystyle y=x-\frac{2}{x}$のグラフの概形をかけ.
(2)不等式$\displaystyle |x-\displaystyle\frac{2|{x}}<1$を解け.
徳島大学 国立 徳島大学 2014年 第3問
次の問いに答えよ.

(1)等式$\displaystyle \sin^4 x \cos^2 x+\cos^4 x \sin^2 x=\frac{1}{4} \sin^2 2x$が成り立つことを示せ.
(2)$\displaystyle x=\frac{\pi}{2}-t$とおくことにより,$\displaystyle \int_0^{\frac{\pi}{2}} \sin^4 x \cos^2 x \, dx=\int_0^{\frac{\pi}{2}} \cos^4 t \sin^2 t \, dt$が成り立つことを示せ.
(3)$\displaystyle \int_0^{\frac{\pi}{2}} \sin^4 x \cos^2 x \, dx$の値を求めよ.
三重大学 国立 三重大学 2014年 第5問
実数$a$に対して,下の$4$つの条件$p,\ q,\ r,\ s$を考える.ただし,実数$k$に対して,$[k]$は$k$以下の最大の整数を表し,$\langle k \rangle$は$k$以上の最小の整数を表すとする.たとえば,$k=2.15$のとき,$[k]=2$であり,$\langle k \rangle=3$である.また,$|k|$は$k$の絶対値を表す.

$p:x^2+4x+a^2=0$を満たす実数$x$が存在する.
$q:[a]<\langle a \rangle$
$\displaystyle r:|a-1.5|<\frac{1}{|a-1.5|+1.5}$
$\displaystyle s:0<a<\pi$,かつ,$\displaystyle \sin \left( 2a-\frac{\pi}{4} \right)+\sin \left( 2a+\frac{\pi}{4} \right)=0$

上の$p,\ q,\ r,\ s$それぞれについて,条件を満たす$a$の範囲を求めよ.さらに,以下の$①$,$②$,$③$それぞれについて,$p,\ q,\ r,\ s$の中から,あてはまるものを全て答えよ.

$①$ $p$であるための十分条件である.
$②$ $q$であるための十分条件である.
$③$ $r$であるための十分条件である.
九州工業大学 国立 九州工業大学 2014年 第2問
座標平面において,行列$A=\left( \begin{array}{cc}
\displaystyle\frac{1}{2} & \displaystyle\frac{2}{3} \\
\displaystyle\frac{1}{4} & \displaystyle\frac{2}{3}
\end{array} \right)$が表す移動($1$次変換)を$f$とし,直線$x+2y=1$を$\ell$とする.次に答えよ.

(1)点$\mathrm{P}(p_1,\ p_2)$が$f$によって移る点を$\mathrm{Q}(q_1,\ q_2)$とする.$\mathrm{P}$が$\ell$上の点のとき,$\mathrm{Q}$は$\ell$上にあることを示せ.
(2)$\ell$上の点$\mathrm{R}$は$f$によって$\mathrm{R}$自身に移る.

(i) $\mathrm{R}$の座標を求めよ.
(ii) $\mathrm{R}$と異なる$\ell$上の点$\mathrm{P}$が$f$によって点$\mathrm{Q}$に移るとき,$\displaystyle \frac{|\overrightarrow{\mathrm{RQ}}|}{|\overrightarrow{\mathrm{RP}}|}$を求めよ.

(3)数列$\{a_n\},\ \{b_n\}$を
\[ a_1=1,\quad b_1=0,\quad \left( \begin{array}{c}
a_{n+1} \\
b_{n+1}
\end{array} \right)=A \left( \begin{array}{c}
a_{n} \\
b_{n}
\end{array} \right) \quad (n=1,\ 2,\ 3,\ \cdots) \]
により定める.$\{a_n\},\ \{b_n\}$の一般項を求めよ.さらに$\displaystyle \lim_{n \to \infty} a_n$,$\displaystyle \lim_{n \to \infty} b_n$を求めよ.
徳島大学 国立 徳島大学 2014年 第2問
四面体$\mathrm{OABC}$において$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.$|\overrightarrow{a}|=|\overrightarrow{b}|=|\overrightarrow{c}|=1$,$\displaystyle \overrightarrow{a} \cdot \overrightarrow{b}=\frac{2}{3}$が成り立つとき,$\overrightarrow{a} \cdot \overrightarrow{c}=\alpha$,$\overrightarrow{b} \cdot \overrightarrow{c}=\beta$として次の問いに答えよ.

(1)$s,\ t$を実数として$\overrightarrow{\mathrm{OH}}=s \overrightarrow{a}+t \overrightarrow{b}$と表される点$\mathrm{H}$を,$\overrightarrow{\mathrm{CH}}$が$\overrightarrow{a}$および$\overrightarrow{b}$と垂直となるようにとる.このとき,$\alpha$,$\beta$を$s,\ t$の式で表せ.
(2)三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とする.$(1)$の点$\mathrm{H}$に対して,$\displaystyle \overrightarrow{\mathrm{HG}}=\frac{1}{3} \overrightarrow{c}$となるとき,$\alpha$,$\beta$の値を求めよ.
(3)$\alpha$,$\beta$が$(2)$で求めた値をとるとき,$|\overrightarrow{\mathrm{CH}}|$の値を求めよ.
徳島大学 国立 徳島大学 2014年 第4問
次の問いに答えよ.

(1)$2$次方程式$x^2+2mx+m^2+2m-8=0$が異なる$2$つの負の解をもつとき,定数$m$の範囲を求めよ.
(2)数列$\{a_n\}$は初項$1$,公比$r (0<r<1)$の等比数列である.数列$\{b_n\}$は$\displaystyle a_{n+1}=\frac{(a_n)^{\frac{4}{3}}}{\sqrt{b_n}}$を満たす.数列$\{b_n\}$の一般項および無限級数$\displaystyle \sum_{n=1}^\infty b_n$の和を求めよ.
徳島大学 国立 徳島大学 2014年 第1問
次の問いに答えよ.

(1)関数$\displaystyle y=x-\frac{2}{x}$のグラフの概形をかけ.
(2)不等式$\displaystyle |x-\displaystyle\frac{2|{x}}<1$を解け.
徳島大学 国立 徳島大学 2014年 第2問
四面体$\mathrm{OABC}$において$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.$|\overrightarrow{a}|=|\overrightarrow{b}|=|\overrightarrow{c}|=1$,$\displaystyle \overrightarrow{a} \cdot \overrightarrow{b}=\frac{2}{3}$が成り立つとき,$\overrightarrow{a} \cdot \overrightarrow{c}=\alpha$,$\overrightarrow{b} \cdot \overrightarrow{c}=\beta$として次の問いに答えよ.

(1)$s,\ t$を実数として$\overrightarrow{\mathrm{OH}}=s \overrightarrow{a}+t \overrightarrow{b}$と表される点$\mathrm{H}$を,$\overrightarrow{\mathrm{CH}}$が$\overrightarrow{a}$および$\overrightarrow{b}$と垂直となるようにとる.このとき,$\alpha$,$\beta$を$s,\ t$の式で表せ.
(2)三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とする.$(1)$の点$\mathrm{H}$に対して,$\displaystyle \overrightarrow{\mathrm{HG}}=\frac{1}{3} \overrightarrow{c}$となるとき,$\alpha$,$\beta$の値を求めよ.
(3)$\alpha$,$\beta$が$(2)$で求めた値をとるとき,$|\overrightarrow{\mathrm{CH}}|$の値を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。