タグ「分数」の検索結果

143ページ目:全4648問中1421問~1430問を表示)
岐阜薬科大学 公立 岐阜薬科大学 2015年 第5問
次の問いに答えよ.ただし,$n$は自然数とする.

(1)不等式$\displaystyle \frac{1}{n+1}<\log \left( 1+\frac{1}{n} \right)<\frac{1}{n}$を証明せよ.ただし,$\log$は自然対数とする.
(2)$(1)$の不等式を使って,次の極限値を求めよ.
\[ \lim_{n \to \infty} \left( 1+\frac{1}{2}+\frac{1}{3}+\cdots +\frac{1}{n} \right) \]
(3)$(1)$の不等式を使って,次の極限値を求めよ.
\[ \lim_{n \to \infty} \left( \frac{1}{n+1}+\frac{1}{n+2}+\cdots +\frac{1}{2n} \right) \]
(4)区分求積法を使って,次の極限値を求めよ.
\[ \lim_{n \to \infty} \left( \frac{1}{n+1}+\frac{1}{n+2}+\cdots +\frac{1}{2n} \right) \]
(5)次の極限値を求めよ.
\[ \lim_{n \to \infty} \left( 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots +\frac{1}{2n-1}-\frac{1}{2n} \right) \]
名古屋市立大学 公立 名古屋市立大学 2015年 第1問
次の問いに答えよ.

(1)平面上のベクトル$\overrightarrow{a},\ \overrightarrow{b}$に対して,$\overrightarrow{p}=-\overrightarrow{a}+3 \overrightarrow{b}$,$\displaystyle \overrightarrow{q}=\frac{1}{5}(\overrightarrow{a}+3 \overrightarrow{b})$とする.$|\overrightarrow{p}|=5$,$|\overrightarrow{q}|=2$であるとき,次の問いに答えよ.

(i) $\overrightarrow{a},\ \overrightarrow{b}$をそれぞれ$\overrightarrow{p},\ \overrightarrow{q}$を用いて表せ.
(ii) $\sqrt{2} \, |\overrightarrow{a}|=3 \, |\overrightarrow{b}|$のとき,内積$\overrightarrow{p} \cdot \overrightarrow{q}$を求めよ.

(2)関数$\displaystyle f(x)=\sin 2x+\sqrt{6}(\cos x-\sin x)-\frac{7}{4}$について,次の問いに答えよ.ただし,$0 \leqq x \leqq 2\pi$とする.

(i) $t=\cos x-\sin x$とおく.$t$のとりうる値の範囲を求め,$f(x)$を$t$の式で表せ.
(ii) $f(x)$の最大値と最小値,およびそれらを与える$x$の値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2015年 第2問
数列$\{a_n\}$が$\displaystyle \frac{a_n-3a_{n+1}}{4(n+1)}=a_na_{n+1} (n=1,\ 2,\ 3,\ \cdots)$で定義されている.ただし,初項$a_1=1$とする.次の問いに答えよ.

(1)$a_n \neq 0$を示せ.
(2)$\displaystyle b_n=\frac{1}{a_n}+2n (n=1,\ 2,\ 3,\ \cdots)$とおくとき,数列$\{b_n\}$のみたす漸化式を求めよ.
(3)数列$\{a_n\}$の一般項を求めよ.
名古屋市立大学 公立 名古屋市立大学 2015年 第3問
$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$で定義された関数$\displaystyle f(x)=\int_x^{x+\frac{\pi}{4}} |2 \cos^2 t+2 \sin t \cos t-1| \, dt$について,次の問いに答えよ.

(1)$\displaystyle f \left( \frac{\pi}{2} \right)$の値を求めよ.
(2)積分を計算して,$f(x)$を求めよ.
(3)$f(x)$の最大値と最小値,およびそれらを与える$x$の値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2015年 第1問
点$\displaystyle \mathrm{A} \left( -1,\ \frac{1}{2} \right)$および放物線$\displaystyle C:y=\frac{x^2}{2}$を考える.点$\mathrm{A}$を通る傾き$m$の直線を$\ell$とする.ただし,$m$は正である.次の問いに答えよ.

(1)$C$と$\ell$の交点の座標を$m$で表せ.
(2)第$2$象限において$C$,$\ell$および$x$軸で囲まれる図形の面積$S(m)$を求めよ.
(3)$C$と$\ell$で囲まれた図形の面積を$T(m)$とする.$\displaystyle \frac{T(m)}{mS(m)}=18$となる$m$に対し,$\displaystyle \frac{n}{10}<m<\frac{n+1}{10}$を満たす自然数$n$を求めよ.
名古屋市立大学 公立 名古屋市立大学 2015年 第4問
図$1$~$3$のような網目状の道があり,頂点$\mathrm{O}$を出発点とし,各頂点においてそれぞれ$\displaystyle \frac{1}{2}$の確率で上,または右斜め下に進む.ただし,右斜め下に道がない場合は必ず上に,上に道がない場合は必ず右斜め下に進み,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$のいずれかに到達したら停止する.次の問いに答えよ.
(図は省略)

(1)図$1$において,各頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に到達する確率$P_{\mathrm{A}},\ P_{\mathrm{B}},\ P_{\mathrm{C}}$を求めよ.
(2)図$2$において,$\mathrm{C}_1,\ \mathrm{C}_2$をともに通過して$\mathrm{C}$に到達する確率を求めよ.
(3) 図$2$において,$\mathrm{B}_1,\ \mathrm{B}_2$をともに通過して$\mathrm{B}$に到達する確率を求めよ.
名古屋市立大学 公立 名古屋市立大学 2015年 第2問
数列$\{a_n\}$が$\displaystyle \frac{a_n-3a_{n+1}}{4(n+1)}=a_na_{n+1} (n=1,\ 2,\ 3,\ \cdots)$で定義されている.ただし,初項$a_1=1$とする.次の問いに答えよ.

(1)$a_n \neq 0$を示せ.
(2)$\displaystyle b_n=\frac{1}{a_n}+2n (n=1,\ 2,\ 3,\ \cdots)$とおくとき,数列$\{b_n\}$のみたす漸化式を求めよ.
(3)数列$\{a_n\}$の一般項を求めよ.
名古屋市立大学 公立 名古屋市立大学 2015年 第3問
図$1$~$3$のような網目状の道があり,頂点$\mathrm{O}$を出発点とし,各頂点においてそれぞれ$\displaystyle \frac{1}{2}$の確率で上,または右斜め下に進む.ただし,右斜め下に道がない場合は必ず上に,上に道がない場合は必ず右斜め下に進み,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$のいずれかに到達したら停止する.次の問いに答えよ.
(図は省略)

(1)図$1$において,各頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に到達する確率$P_{\mathrm{A}},\ P_{\mathrm{B}},\ P_{\mathrm{C}}$を求めよ.
(2)図$2$において,$\mathrm{C}_1,\ \mathrm{C}_2$をともに通過して$\mathrm{C}$に到達する確率を求めよ.
(3) 図$2$において,$\mathrm{B}_1,\ \mathrm{B}_2$をともに通過して$\mathrm{B}$に到達する確率を求めよ.
名古屋市立大学 公立 名古屋市立大学 2015年 第1問
点$\displaystyle \mathrm{A} \left( -1,\ \frac{1}{2} \right)$および放物線$\displaystyle C:y=\frac{x^2}{2}$を考える.点$\mathrm{A}$を通る傾き$m$の直線を$\ell$とする.ただし,$m$は正である.次の問いに答えよ.

(1)$C$と$\ell$の交点の座標を$m$で表せ.
(2)第$2$象限において$C$,$\ell$および$x$軸で囲まれる図形の面積$S(m)$を求めよ.
(3)$C$と$\ell$で囲まれた図形の面積を$T(m)$とする.$\displaystyle \frac{T(m)}{mS(m)}=18$となる$m$に対し,$\displaystyle \frac{n}{10}<m<\frac{n+1}{10}$を満たす自然数$n$を求めよ.
名古屋市立大学 公立 名古屋市立大学 2015年 第2問
$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$で定義された関数$\displaystyle f(x)=\int_x^{x+\frac{\pi}{4}} |2 \cos^2 t+2 \sin t \cos t-1| \, dt$について,次の問いに答えよ.

(1)$\displaystyle f \left( \frac{\pi}{2} \right)$の値を求めよ.
(2)積分を計算して,$f(x)$を求めよ.
(3)$f(x)$の最大値と最小値,およびそれらを与える$x$の値を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。