タグ「分数」の検索結果

141ページ目:全4648問中1401問~1410問を表示)
高知工科大学 公立 高知工科大学 2015年 第1問
次の各問に答えよ.

(1)$f(x)=|2x+3|$のとき$f(-3)+f(0)+f(3)$の値を求めよ.
(2)方程式$\log_2 (x-1)+\log_2 (x+2)=2$を解け.
(3)$\left\{ \begin{array}{l}
\sin x+\cos y=1 \\
\cos x+\sin y=\displaystyle\frac{1}{2}
\end{array} \right.$のとき$\sin (x+y)$の値を求めよ.
(4)$a,\ b,\ x$を実数とする.命題
\[ x^2-(a+b)x+ab \leqq 0 \Longrightarrow x^2<2x+3 \]
が真となるような定数$a,\ b$の満たすべき条件を求めよ.ただし,$a \leqq b$とする.
(5)$a$を定数とし,関数$y=f(x)$は$x=a$で微分可能であるとする.このとき,極限値
\[ \lim_{h \to 0} \frac{f(a+3h)-f(a-2h)}{h} \]
を$f^\prime(a)$を用いて表せ.
(6)関数$f(x)=\log | \cos x |$の導関数を求めよ.
(7)$2$つの曲線$y=\log x$と$y=ax^2$とがただ$1$つの共有点をもつような正の定数$a$の値を求めよ.
(8)等式$\displaystyle \lim_{x \to 1} \frac{\sqrt{2x^2+a}-x-1}{(x-1)^2}=b$が成り立つような定数$a,\ b$の値を求めよ.
九州歯科大学 公立 九州歯科大学 2015年 第1問
次の問いに答えよ.

(1)$5 \tan \theta=2$のとき,$\displaystyle A=\frac{\sin^4 \theta-\cos^4 \theta}{12 \sin \theta \cos \theta+6}$の値を求めよ.
(2)$1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7$の$7$個の数字がある.これらの数字を並べて$7$桁の整数を作る.ただし,同じ数字は$2$度以上使わないものとする.このとき,偶数が隣り合わないような$7$桁の整数は全部で$J$個できる.また,これらの$J$個の中で奇数となるものは$K$個できる.$J$と$K$の値を求めよ.
(3)$m$を自然数とする.関数$f(x)=(x-2) \sqrt{x^4(x+1)^2}$に対して,定積分$\displaystyle B=m \int_{-2}^2 f(x) \, dx$の値が整数となる$m$の最小値$M$の値を求めよ.また,このときの$B$の値を求めよ.
九州歯科大学 公立 九州歯科大学 2015年 第2問
$\{a_n\}$を初項$a_1=A$,公差$d$の等差数列とする.自然数$j$と$k$に対して
\[ S(j,\ k)=\sum_{i=j}^k a_i=a_j+a_{j+1}+a_{j+2}+\cdots +a_k \]
とおく.$S(1,\ 10)=800$,$S(11,\ 20)=200$が成り立つとき,次の問いに答えよ.ただし,$j<k$とする.

(1)定数$A$と$d$の値を求めよ.

(2)$\displaystyle \frac{S(n+1,\ n^2)}{n(n-1)}=\alpha n^2+\beta n+\gamma$をみたす定数$\alpha,\ \beta,\ \gamma$の値を求めよ.

(3)$S(n+1,\ n^2)<0$となる$n$の最小値$N$の値を求めよ.

(4)$\displaystyle T_n=\sum_{i=1}^n a_{5i}$とおくとき,極限$\displaystyle \lim_{n \to \infty} \frac{(T_n)^2}{S(n+1,\ n^2)}$の値を求めよ.
九州歯科大学 公立 九州歯科大学 2015年 第3問
次の問いに答えよ.

(1)$t=2^x$とおくとき,$A=-8^x+4^x+2^{x+2}-4$を$t$を用いて表せ.また,
\[ t^B=\frac{8^x-4^x-2^{x+2}+4}{(4^x-4)(8^x-4^x)} \]
をみたす定数$B$の値を求めよ.
(2)正の定数$k$に対して,$C=k^2(-8^x+4^x+2^{x+2}-4)+(4^x-4)(8^x-4^x)$とおく.$C$を$t$と$k$を用いて表せ.ただし,答は因数分解せよ.
(3)曲線$y=k^2(-8^x+4^x+2^{x+2}-4)+(4^x-4)(8^x-4^x)$と$x$軸との交点と接点の数がそれぞれ$1$個であるような$k$の値をすべて求めよ.
(4)$k>2$とする.曲線$y=k^2(-8^x+4^x+2^{x+2}-4)+(4^x-4)(8^x-4^x)$が$x$軸と異なる$3$点$(p,\ 0)$,$(q,\ 0)$,$(r,\ 0)$で交わるとき,$(p-q)(q-r)(r-p)=20$をみたす$k$の値を求めよ.ただし,$p<q<r$とする.
愛知県立大学 公立 愛知県立大学 2015年 第2問
$\triangle \mathrm{ABC}$の頂点を移動する点$\mathrm{P}$があり,初め頂点$\mathrm{A}$にいる.その後,$1$秒毎に,以下の規則に従ってその位置を変化させる.

(i) 頂点$\mathrm{A}$にいるときは,確率$\displaystyle \frac{1}{2}$で頂点$\mathrm{B}$に移るか,確率$\displaystyle \frac{1}{2}$で頂点$\mathrm{C}$に移る.
(ii) 頂点$\mathrm{B}$にいるときは,確率$\displaystyle \frac{1}{2}$で頂点$\mathrm{A}$に移るか,確率$\displaystyle \frac{1}{4}$で頂点$\mathrm{B}$にとどまるか,確率$\displaystyle \frac{1}{4}$で頂点$\mathrm{C}$に移る.
(iii) 頂点$\mathrm{C}$にいるときは,確率$\displaystyle \frac{1}{2}$で頂点$\mathrm{A}$に移るか,確率$\displaystyle \frac{1}{4}$で頂点$\mathrm{B}$へ移るか,確率$\displaystyle \frac{1}{4}$で頂点$\mathrm{C}$にとどまる.

初め頂点$\mathrm{A}$にいた点$\mathrm{P}$が$n$秒後に頂点$\mathrm{A}$,頂点$\mathrm{B}$にいる確率をそれぞれ$p_n$,$q_n$とする.以下の問いに答えよ.

(1)$p_1,\ q_1,\ p_2,\ q_2$を求めよ.
(2)$p_{n+1},\ q_{n+1}$をそれぞれ$p_n$の式で表せ.
(3)$p_n,\ q_n$をそれぞれ$n$の式で表せ.
(4)$\displaystyle \lim_{n \to \infty}p_n,\ \lim_{n \to \infty}q_n$をそれぞれ求めよ.
愛知県立大学 公立 愛知県立大学 2015年 第4問
$a>1$,$b>0$,$c>0$,$f(t)=a^{-bt}$とする.点$\mathrm{P}$の座標$(x,\ y)$が,時刻$t$の関数として$x=f(t) \cos t$,$y=f(t) \sin t$のように表されるとき,以下の問いに答えよ.

(1)$f(t)$を$t$について微分せよ.
(2)$t=0$から$t=c$までの間に点$\mathrm{P}$が動く道のり$l$を$a,\ b,\ c$で表せ.
(3)$(2)$の$l$について,$\displaystyle L=\lim_{c \to \infty} l$を$a,\ b$で表せ.
(4)$t=0$から$t=d$までの間に点$\mathrm{P}$が動く道のりが,$(3)$で求めた$L$の$\displaystyle \frac{1}{2}$であるとする.$a=2$,$b=5$であるとき$d$を求めよ.
県立広島大学 公立 県立広島大学 2015年 第1問
$x>0$を実数とし,$\displaystyle f(x)=\left( \frac{10}{x} \right)^{45}$とする.次の問いに答えよ.

(1)$f(2)$の桁数を求めよ.ただし,$\log_{10}2=0.3010$とする.
(2)$|\log_{10|x-0.3010}<0.01$となる実数$x$について,$f(x)$の整数部分の桁数を求めよ.
(3)$d$を定数とする.$|\log_{10|x-0.3010}<d$を満たすすべての実数$x$について,$f(x)$の整数部分の桁数が同じになる.このような性質を持つ定数$d$のとる値の範囲を求めよ.
県立広島大学 公立 県立広島大学 2015年 第2問
次の条件によって定められる数列$\{a_n\}$がある.
\[ a_1=-1,\quad a_{n+1}=\frac{5a_n+9}{-a_n+11} \quad (n=1,\ 2,\ 3,\ \cdots) \]
次の問いに答えよ.

(1)$a_2,\ a_3,\ a_4$を求めよ.
(2)一般項$a_n$を推測し,その結果を数学的帰納法によって証明せよ.
(3)$a_n<3$を示せ.
(4)$a_n<a_{n+1}$を示せ.
(5)$a_n$が自然数となる$n$をすべて求めよ.
広島市立大学 公立 広島市立大学 2015年 第1問
次の問いに答えよ.

(1)次の関数の導関数を求めよ.
\[ y=x^2 2^{\frac{1}{x}} \]
(2)次の定積分を求めよ.

(i) $\displaystyle \int_0^{\frac{1}{2}} \frac{x^2}{\sqrt{1-x^2}} \, dx$
(ii) $\displaystyle \int_0^1 e^{-\sqrt{1-x}} \, dx$

(3)次の極限値を求めよ.
\[ \lim_{n \to \infty} \left( \frac{1^9}{n^{10}}+\frac{2^9}{n^{10}}+\frac{3^9}{n^{10}}+\cdots +\frac{n^9}{n^{10}} \right) \]
広島市立大学 公立 広島市立大学 2015年 第2問
次の問いに答えよ.

(1)等式$\displaystyle \sin \frac{2}{5} \pi=\sin \frac{3}{5} \pi$が成り立つことを示せ.

(2)$\displaystyle a=\frac{\sin 2\theta}{\sin \theta},\ b=\frac{\sin 3\theta}{\sin \theta}$とおく.$\cos \theta=t$とするとき,$a$と$b$をそれぞれ$t$の整式として表せ.ただし,$0<\theta<\pi$とする.

(3)$\displaystyle \cos \frac{\pi}{5}$の値を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。