タグ「分数」の検索結果

136ページ目:全4648問中1351問~1360問を表示)
昭和薬科大学 私立 昭和薬科大学 2015年 第1問
次の問いに答えよ.

(1)${10}^{a+1}=45,\ {10}^{b+2}=75$のとき,$\log_{10}5$を$a,\ b$を用いて表すと,$\displaystyle \log_{10}5=\frac{-a+[ア]b+[イ]}{[ウ]}$である.
(2)次の連立不等式を満たす整数$x$をすべて加えると$[エ][オ]$である.
\[ \left\{ \begin{array}{l}
x^2-12x+10<0 \\
x^2-6x-1>0 \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
(3)区別のつかない$8$個の球を$4$人で分配する方法は$[カ][キ][ク]$通りである.ただし,$1$個も配分されない人がいる場合も含めて考えることにする.
(4)$\displaystyle \tan (\alpha-\beta)=2,\ \alpha+\beta=\frac{\pi}{2},\ 0<\alpha<\frac{\pi}{2}$のとき,$\tan \alpha=[ケ]+\sqrt{[コ]}$,$\tan \beta=[サ][シ]+\sqrt{[ス]}$である.
(5)点$\mathrm{A}(6,\ 0,\ 5)$,$\mathrm{B}(0,\ -7,\ 3)$,$\mathrm{C}(0,\ 0,\ 1)$に対して,直線$\mathrm{AB}$と$xy$平面の交点を$\mathrm{P}$,直線$\mathrm{AC}$と$xy$平面の交点を$\mathrm{Q}$とする.直線$\mathrm{PQ}$の方程式は
\[ y=\frac{[セ]}{[ソ]}x+\frac{[タ]}{[チ]},\quad z=0 \]
である.
(6)$\displaystyle \sum_{k=1}^n k \cdot 3^k=\frac{[ツ]}{[テ]} \{([ト]n-1)3^n+1 \}$である.
東京理科大学 私立 東京理科大学 2015年 第2問
$s$を$-1 \leqq s \leqq 1$を満たす実数とする.$xy$平面上のベクトル$\overrightarrow{a_s},\ \overrightarrow{b_s},\ \overrightarrow{c_s}$を
\[ \overrightarrow{a_s}=\left( s,\ \sqrt{1-s^2} \right),\quad \overrightarrow{b_s}=\left( \sqrt{1-s^2},\ -s \right),\quad \overrightarrow{c_s}=\left( s \sqrt{1+s^2},\ \sqrt{1-s^4} \right) \]
と定める.$t$を実数とし,$f_t(s),\ g_t(s),\ h_t(s),\ k_t(s)$を


$\displaystyle \overrightarrow{a_s}+\frac{t}{|\overrightarrow{b_s}|} \overrightarrow{b_s}=(f_t(s),\ g_t(s))$

$\displaystyle \overrightarrow{a_s}-\frac{t}{|\overrightarrow{c_s}|} \overrightarrow{c_s}=(h_t(s),\ k_t(s))$


により定める.さらに,$s$を媒介変数とする$2$つの曲線

$\displaystyle C_t:x=f_t(s),\ y=g_t(s) \quad \left( -\frac{1}{2} \leqq s \leqq 1 \right),$
$K_t:x=h_t(s),\ y=k_t(s) \quad (-1 \leqq s \leqq 1)$

を考える.次の各問いに答えよ.

(1)$f_t(s),\ g_t(s),\ h_t(s),\ k_t(s)$を$s$と$t$を用いて表せ.
(2)$\overrightarrow{a_s}$と$\overrightarrow{b_s}$のなす角,および,$\overrightarrow{a_s}$と$\overrightarrow{c_s}$のなす角を求めよ.
(3)${f_t(s)}^2+{g_t(s)}^2$を$t$のみを用いて表せ.
(4)$t$が$0$から$\sqrt{3}$まで動くとき,$C_t$が通過する部分を$D$とする.$D$を図示せよ.
(5)$(4)$で定めた$D$の面積を求めよ.
(6)$(4)$で定めた$D$を$x$軸のまわりに$1$回転して得られる回転体の体積を求めよ.
(7)$K_{\frac{1}{2}},\ K_1,\ K_{\frac{3}{2}}$を図示せよ.
(8)$t$が$\displaystyle \frac{1}{2} \leqq |t-1| \leqq 1$を満たす範囲を動くとき,$K_t$が通過する部分の面積を求めよ.
広島女学院大学 私立 広島女学院大学 2015年 第1問
$\displaystyle \frac{1}{\sqrt{3}-\sqrt{2}}$の小数部分を$x$とおく.このとき,次の問いに答えよ.


(1)$x$の値を求めよ.

(2)$\displaystyle \frac{25}{x^2+6x-3}$の値を求めよ.
広島女学院大学 私立 広島女学院大学 2015年 第5問
命題「$\displaystyle 2 |x-\displaystyle\frac{1|{2}}-x>0$ならば$x>1$」について,次の問いに答えよ.

(1)逆を述べよ.
(2)逆の真偽を真か偽で答えよ.
(3)裏を述べよ.
(4)裏の真偽を真か偽で答えよ.
(5)対偶を述べよ.
(6)対偶の真偽を真か偽で答えよ.
崇城大学 私立 崇城大学 2015年 第2問
関数$f(x)=3x^2+5$のグラフ上の点$(-2,\ f(-2))$における接線を$\ell_1$とし,直線$x=k$(ただし,$k \neq -2$)を$\ell_2$とするとき,次の各問に答えよ.

(1)接線$\ell_1$の方程式を求めよ.
(2)関数$f(x)$のグラフと接線$\ell_1$,直線$\ell_2$で囲まれた図形の面積が$\displaystyle \frac{125}{8}$となるとき,定数$k$の値を求めよ.
崇城大学 私立 崇城大学 2015年 第1問
次の各問に答えよ.

(1)$2$次方程式$(a-1)x^2+2(a+1)x+a+2=0$が重解をもつとき,定数$a$の値とその重解を求めよ.
(2)$0 \leqq \theta \leqq \pi$で,$\displaystyle \sin \theta \cos \theta=-\frac{1}{4}$となる$\theta$の値をすべて求めよ.
(3)$x,\ y$が$x^2+y^2=4$を満たすとき,$2x+y^2$の最大値と最小値,およびそのときの$x,\ y$の値を求めよ.
崇城大学 私立 崇城大学 2015年 第2問
放物線$y=-x^2+4$上に$x$座標が正である点$\mathrm{P}$をとる.点$\mathrm{P}$におけるこの放物線の接線と点$\mathrm{P}$で直交する直線を$\ell$とするとき,次の各問に答えよ.

(1)この放物線上の点$\displaystyle \left( -\frac{3}{2},\ \frac{7}{4} \right)$を通るような直線$\ell$の方程式を求めよ.
(2)この放物線と$x$軸で囲まれた図形は,$(1)$で求めた直線で$3$つの部分に分けられる.点$(0,\ 4)$,$(0,\ 3)$,$(0,\ 2)$を含む部分の面積をそれぞれ$S_1$,$S_2$,$S_3$とするとき,$S_1:S_2:S_3$を求めよ.
京都薬科大学 私立 京都薬科大学 2015年 第1問
次の$[ ]$にあてはまる数または式を記入せよ.

(1)$2$次関数$f(x)=ax^2+bx+2a^2$は,$x=-1$で最大値をとり,$f(1)=14$を満たす.このとき,$a=[ア]$,$b=[イ]$で,$f(x)$の最大値は$[ウ]$である.
(2)$1$つのさいころを$1$の目が出るまで投げ続ける.ただし,投げる回数は最大$100$回とする.このとき,ちょうど$n$回($n<100$)投げてやめる確率は$[エ]$で,投げる回数が$n$回以下($n<100$)でやめる確率は$[オ]$である.また,$1$の目が$2$回出るまで投げ続けるとき(最大$100$回),投げる回数が$n$回以下($n<100$)でやめる確率は$[カ]$である.
(3)平面上の$\triangle \mathrm{OAB}$において,$\mathrm{OA}=4$,$\mathrm{OB}=3$,$\displaystyle \cos \angle \mathrm{AOB}=\frac{2}{3}$が成立しているとする.このとき,$\mathrm{AB}=[キ]$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$と表し,$\displaystyle \overrightarrow{\mathrm{OC}}=\frac{5}{2} \overrightarrow{a}+2 \overrightarrow{b}$を満たす点$\mathrm{C}$をとれば,$\mathrm{AC}=[ク]$,$\cos \angle \mathrm{BAC}=[ケ]$が成立する.
(4)不等式$\sin 2\theta+\sin 4\theta>\sin 3\theta$を満たす$\theta$の範囲は$[コ]<\theta<[サ]$および$[シ]<\theta<[ス]$である.ただし,$0<\theta<\pi$とする.
(5)ある正の数$a$を底としたときの,$2$と$5$の対数の近似値がそれぞれ$\log_a 2=0.693$,$\log_a 5=1.609$であるとする.また,$\sqrt[4]{10}=1.778$とする.指数関数$y=pa^{-qx}$($p,\ q$は正の数)において,$x=1$のとき$y=10$,$x=5$のとき$y=1$となるならば,$p=[セ]$,$q=[ソ]$である.また,$y$がちょうど$p$の半分となるときの$x$の値は$[タ]$である.なお,解答は小数点以下$2$桁で示すこと(必要ならば小数第$3$位を四捨五入せよ).
明治大学 私立 明治大学 2015年 第1問
次の$[ ]$に適する数を入れよ.

(1)製品$\mathrm{A}$は$3$つの部品$\mathrm{a}$,$\mathrm{b}$,$\mathrm{c}$から構成される.部品$\mathrm{a}$,$\mathrm{b}$,$\mathrm{c}$は,製造する過程において各々$\displaystyle \frac{1}{8}$の確率で低品質のものが発生する.製品$\mathrm{A}$に$2$つ以上の低品質の部品が含まれるとき,製品$\mathrm{A}$は不良品となる.製品$\mathrm{A}$を$1$つ製造するとき,それが不良品となる確率は$\displaystyle \frac{[ア][イ]}{[ウ][エ][オ]}$である.

(2)$a$を実数,$k$を正の実数として
\[ F(a)=\int_a^k (x^2-a^2) \, dx \]
とおく.関数$F(a)$の極値の差が$72$となるような$k$の値は$[カ]$である.
(3)四面体$\mathrm{OABC}$は,$\mathrm{OA}=4$,$\mathrm{OB}=5$,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$をみたすとする.$\mathrm{O}$から辺$\mathrm{AB}$に垂線を下ろし,この垂線と$\mathrm{AB}$との交点を$\mathrm{D}$とする.このとき
\[ \overrightarrow{\mathrm{OD}}=\frac{[キ]}{[ク]} \overrightarrow{\mathrm{OA}}+\frac{[ケ]}{[コ]} \overrightarrow{\mathrm{OB}} \]
である.辺$\mathrm{BC}$を$3:2$に内分する点を$\mathrm{E}$,線分$\mathrm{AE}$と線分$\mathrm{CD}$との交点を$\mathrm{F}$とする.このとき
\[ \overrightarrow{\mathrm{OF}}=\frac{[サ]}{[シ]} \overrightarrow{\mathrm{OA}}+\frac{[ス]}{[セ]} \overrightarrow{\mathrm{OB}}+\frac{[ソ]}{[タ][チ]} \overrightarrow{\mathrm{OC}} \]
である.
明治大学 私立 明治大学 2015年 第3問
次の空欄に当てはまる数字を入れよ.

(1)$y=(x-1) |x-2|$のグラフと$y=k$のグラフが異なる$3$点で交わるような定数$k$の値の範囲は
\[ [ア]<k<\frac{[イ]}{[ウ]} \]
である.
(2)$y=(x-1) |x-2|$のグラフと$y=kx+k-1$のグラフが異なる$3$点で交わるような定数$k$の値の範囲は
\[ \frac{[エ]}{[オ]}<k<[カ]-[キ] \sqrt{[ク]} \]
または
\[ [カ]+[キ] \sqrt{[ク]}<k \]
である.
(3)$k>1$のとき,$y=(x-1) |x-k|$のグラフと$y=kx-k^2+1$のグラフが異なる$3$点で交わるような定数$k$の値の範囲は
\[ \frac{[ケ]}{[コ]}<k \]
である.これらの交点の$x$座標を小さいほうから$x_1,\ x_2,\ x_3$とする.
このとき,$x_3-x_2=k$となるような$k$の値は$[サ]$である.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。