タグ「分数」の検索結果

130ページ目:全4648問中1291問~1300問を表示)
大阪工業大学 私立 大阪工業大学 2015年 第1問
次の空所を埋めよ.

(1)$2$次方程式$x^2-x+k=0$が異なる$2$つの正の実数$m$と$m^2$を解にもつとき,実数$m,\ k$の値は,$m=[ア]$,$k=[イ]$である.
(2)$f(x)=2 \sin x \cos x+\sqrt{3} \cos 2x$とする.このとき,$\displaystyle f(x)=2 \sin \left( 2x+[ウ] \right)$である.ただし,$0 \leqq [ウ]<2\pi$とする.また,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$のとき,$f(x)$の最小値$m$は,$m=[エ]$である.
(3)$3^a=2,\ 8^b=9$のとき,$a=[オ]$であり,積$ab$の値を対数を用いずに表すと,$ab=[カ]$である.
(4)$\fbox{$1$}$,$\fbox{$1$}$,$\fbox{$2$}$,$\fbox{$3$}$の$4$枚のカードのうち,$3$枚を並べて$3$桁の整数をつくるとき,つくられる整数は全部で$[キ]$個ある.また,$\fbox{$0$}$,$\fbox{$1$}$,$\fbox{$1$}$,$\fbox{$2$}$,$\fbox{$3$}$の$5$枚のカードのうち,$4$枚を並べて$4$桁の整数をつくるとき,つくられる整数は全部で$[ク]$個ある.
大阪工業大学 私立 大阪工業大学 2015年 第3問
数列$\{a_n\}$を$\displaystyle a_1=\frac{1}{2}$,$\displaystyle a_{n+1}=\frac{ka_n}{1+3a_n} (n=1,\ 2,\ 3,\ \cdots)$で定める.ただし,$k$は正の定数とする.このとき,次の空所を埋めよ.

(1)$k=1$のとき,$\displaystyle b_n=\frac{1}{a_n}$とおくと,数列$\{b_n\}$は初項$[ア]$,公差$[イ]$の等差数列となり,数列$\{a_n\}$の一般項は,$a_n=[ウ] (n=1,\ 2,\ 3,\ \cdots)$である.
(2)$k \neq 1$のとき,$\displaystyle c_n=\frac{1}{a_n}-\frac{3}{k-1}$とおくと,数列$\{c_n\}$は初項$[エ]$,公比$[オ]$の等比数列となり,数列$\{a_n\}$の一般項は,$\displaystyle a_n=\frac{k-1}{3+[カ]} (n=1,\ 2,\ 3,\ \cdots)$である.
特に,$k=[キ]$のとき,すべての自然数$n$について$a_n$は一定の値である.
旭川大学 私立 旭川大学 2015年 第1問
次の各設問に答えなさい.

(1)$\displaystyle 3+\frac{n-2}{2}<\frac{n}{3}$を満たす最大の整数$n$を求めよ.
(2)$a,\ b,\ c$を定数とする.ただし$a \neq 0$とする.$2$次関数$y=ax^2+bx+c$のグラフが$3$点$(-1,\ 2)$,$(2,\ 1)$,$(3,\ -6)$を通るとき,$a,\ b,\ c$の値を求めよ.
(3)$5$個の数字$0,\ 1,\ 2,\ 3,\ 4$を使ってできる$4$桁の整数は全部で$[ア]$通りであり,その中で$2015$以下の整数は$[イ]$通りである.ただし,同じ数字は繰り返し使わないものとする.
(4)$\triangle \mathrm{ABC}$において,$\displaystyle \frac{8}{\sin A}=\frac{7}{\sin B}=\frac{5}{\sin C}$である.このとき,$\angle \mathrm{B}$の大きさを求めよ.
(5)方程式$|x^2-2|=x$の解を求めよ.
旭川大学 私立 旭川大学 2015年 第1問
次の各設問に答えなさい.

(1)$\displaystyle \frac{1}{1-a}+\frac{1}{1+a}+\frac{2}{1+a^2}+\frac{4}{1+a^4}+\frac{8}{1+a^8}$を計算しなさい.

(2)$\displaystyle \frac{1}{\sqrt{5}-2}$の整数部分を$a$,小数部分を$b$とするとき,$a$と$b$の値を求めよ.

(3)$k$を正の定数とし,$2$つの放物線$y=-x^2+4x-2k$,$y=x^2+2kx+3k$をそれぞれ$C_1$,$C_2$とする.以下の問いに答えなさい.

(i) $C_1$の頂点の$y$座標が$1$であるとき,$k$の値を求めよ.
(ii) $C_2$が$x$軸と接するとき,$k$の値を求めよ.

(4)$\mathrm{AB}=5$,$\mathrm{AC}=4$,$\angle \mathrm{BAC}={60}^\circ$である$\triangle \mathrm{ABC}$がある.$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,$\mathrm{AD}$の長さを求めよ.
(5)男子$4$人,女子$3$人が一列に並ぶとき,女子$3$人が続く並び方は,$[ア]$通りであり,両端に男子が並ぶのは$[イ]$通りである.
広島経済大学 私立 広島経済大学 2015年 第4問
$\mathrm{AB}=2 \sqrt{3}$,$\angle \mathrm{B}={60}^\circ$,$\angle \mathrm{C}={45}^\circ$の三角形$\mathrm{ABC}$について次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)$\mathrm{AC}=[$28$] \sqrt{[$29$]}$,$\mathrm{BC}=\sqrt{[$30$]}+[$31$]$である.

(2)$\displaystyle \cos \angle \mathrm{BAC}=\frac{\sqrt{[$32$]}-\sqrt{[$33$]}}{[$34$]}$である.

(3)辺$\mathrm{AC}$上に$\mathrm{BA}=\mathrm{BD}$を満たす$\mathrm{A}$と異なる点$\mathrm{D}$を定め,更に辺$\mathrm{BC}$上に$\angle \mathrm{BED}={90}^\circ$を満たす点$\mathrm{E}$を定めると,$\mathrm{AD}=[$35$] \sqrt{[$36$]}-\sqrt{[$37$]}$,$\mathrm{BE}=[$38$]$である.
天使大学 私立 天使大学 2015年 第1問
次の問いに答えなさい.

(1)方程式$27x^3-54x^2-12x+24=0$を解きなさい.
\[ x=\frac{\mkakko{$\mathrm{a}$}}{\mkakko{$\mathrm{b}$}},\ \frac{\mkakko{$\mathrm{c}$}}{\mkakko{$\mathrm{d}$}},\ \mkakko{$\mathrm{e}$} \qquad \text{ただし} \mkakko{$\mathrm{a}$} \text{と} \mkakko{$\mathrm{b}$} \text{と} \mkakko{$\mathrm{d}$} \text{は正の数である.}\]
(2)$x,\ y,\ z$が$\displaystyle x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$をみたすとき,$(x+y)(y+z)(z+x)$の値を求めなさい.
\[ (x+y)(y+z)(z+x)=\mkakko{$\mathrm{f}$} \]
(3)関数$f(x)=|x+1|+|x-1|+|x-2|$の最小値$m$と,最小値をとるときの$x$の値を求めなさい.
\[ x=\mkakko{$\mathrm{g}$} \text{のとき} m=\mkakko{$\mathrm{h}$} \text{である.} \]
(4)$a$を正の定数とする.関数$y=x^2+ax-a^2-3a+1$の$-2a \leqq x \leqq 2a$での最大値$M$を最小にする定数$a$の値と$M$の最小値$m$の値を求めなさい.
\[ a=\frac{\mkakko{$\mathrm{i}$}}{\mkakko{$\mathrm{j}$} \mkakko{$\mathrm{k}$}} \text{のとき,} m=\frac{\mkakko{$\mathrm{l}$} \mkakko{$\mathrm{m}$}}{\mkakko{$\mathrm{n}$} \mkakko{$\mathrm{o}$}} \text{である.} \]
ただし$\mkakko{$\mathrm{j}$}$と$\mkakko{$\mathrm{n}$}$は正の数である.
天使大学 私立 天使大学 2015年 第2問
$\mathrm{BC}=1$,$\angle \mathrm{B}={60}^\circ$,$\angle \mathrm{C}={90}^\circ$をみたす$\triangle \mathrm{ABC}$の辺$\mathrm{BC}$,辺$\mathrm{CA}$,辺$\mathrm{AB}$上にそれぞれ点$\mathrm{P}$,点$\mathrm{Q}$,点$\mathrm{R}$をとる.ただし,点$\mathrm{P}$,点$\mathrm{Q}$,点$\mathrm{R}$は$\triangle \mathrm{ABC}$の頂点とは異なる点で,$\triangle \mathrm{PQR}$は正三角形である.次の問いに答えなさい.

(1)$\angle \mathrm{CPQ}=\theta$とおく.このとき$\angle \mathrm{BPR}=\mkakko{$\mathrm{a}$} \mkakko{$\mathrm{b}$} \mkakko{$\mathrm{c}$}^\circ-\theta$をみたし,$\angle \mathrm{BRP}=\mkakko{$\mathrm{d}$} \theta$である.
(2)$\mathrm{BP}=x$とおく.このとき$\displaystyle \mathrm{CQ}=\frac{\sqrt{\mkakko{$\mathrm{e}$}}}{\mkakko{$\mathrm{f}$}} x$である.
(3)$\triangle \mathrm{PQR}$の面積を$S$とおく.このとき$\displaystyle S=\frac{\sqrt{\mkakko{$\mathrm{g}$}}}{\mkakko{$\mathrm{h}$}} \left( \frac{\mkakko{$\mathrm{i}$}}{\mkakko{$\mathrm{j}$}} x^2+\mkakko{$\mathrm{k}$}x+1 \right)$である.ただし$\mkakko{$\mathrm{j}$}$は正の数である.
(4)$\displaystyle S=\frac{7}{64} \sqrt{3}$のとき,$x$の値を求めなさい.

$\displaystyle x=\frac{\mkakko{$\mathrm{l}$}}{\mkakko{$\mathrm{m}$}}$または$\displaystyle x=\frac{\mkakko{$\mathrm{n}$}}{\mkakko{$\mathrm{o}$} \mkakko{$\mathrm{p}$}}$である.ただし$\mkakko{$\mathrm{m}$}$と$\mkakko{$\mathrm{o}$}$は正の数である.
天使大学 私立 天使大学 2015年 第3問
関数$f(x)=(x^2+2x)^2+2a(x^2+2x)+b$を考える.ただし$a$と$b$は定数であり,$f(x)$の最小値が$-4$,$f(1)=13$をみたすとする.次の問いに答えなさい.

(1)$X=x^2+2x$とおくと$X \geqq \mkakko{$\mathrm{a}$}$である.
(2)$b=\mkakko{$\mathrm{b}$}a+\mkakko{$\mathrm{c}$}$である.
(3)$\displaystyle f(x)=\left( X+\mkakko{$\mathrm{d}$}a \right)^2+\mkakko{$\mathrm{e}$}a^2+\mkakko{$\mathrm{f}$}a+\mkakko{$\mathrm{g}$}$である.
(4)定数$a$と$b$の値を求めなさい.

$a>\mkakko{$\mathrm{h}$}$のとき,$\displaystyle a=\frac{\mkakko{$\mathrm{i}$}}{\mkakko{$\mathrm{j}$}},\ b=\frac{\mkakko{$\mathrm{k}$} \mkakko{$\mathrm{l}$}}{\mkakko{$\mathrm{m}$}}$である.

$a \leqq \mkakko{$\mathrm{n}$}$のとき,$a=\mkakko{$\mathrm{o}$}-\sqrt{\mkakko{$\mathrm{p}$} \mkakko{$\mathrm{q}$}},\ b=\mkakko{$\mathrm{r}$} \mkakko{$\mathrm{s}$}+\mkakko{$\mathrm{t}$} \sqrt{\mkakko{$\mathrm{u}$} \mkakko{$\mathrm{v}$}}$である.

ただし$\mkakko{$\mathrm{j}$}$と$\mkakko{$\mathrm{m}$}$は正の数である.
天使大学 私立 天使大学 2015年 第4問
次の問いに答えなさい.

(1)$\mathrm{A}$,$\mathrm{B}$の$2$人を含む$5$人でじゃんけんを$1$回行う.$5$人の手(グー・チョキ・パー)の出し方の組み合わせは,同様に確からしいとする.

(i) $\mathrm{A}$が$\mathrm{B}$に「グー」で勝つ確率は$\displaystyle \frac{\mkakko{$\mathrm{a}$}}{\mkakko{$\mathrm{b}$} \mkakko{$\mathrm{c}$} \mkakko{$\mathrm{d}$}}$である.ただし$\mkakko{$\mathrm{a}$}$は正の数である.
(ii) $\mathrm{A}$が$\mathrm{B}$に勝つ確率は$\displaystyle \frac{\mkakko{$\mathrm{e}$}}{\mkakko{$\mathrm{f}$} \mkakko{$\mathrm{g}$}}$である.ただし$\mkakko{$\mathrm{e}$}$は正の数である.

(2)$5$人の男性と$5$人の女性で,$2$人のグループを$5$組つくる.

(i) グループのつくり方は,全部で$\mkakko{$\mathrm{h}$} \mkakko{$\mathrm{i}$} \mkakko{$\mathrm{j}$}$通りある.
(ii) 組み合わせをクジで決めるとする.女性の入らない組が少なくとも$1$つできる確率は$\displaystyle \frac{\mkakko{$\mathrm{k}$} \mkakko{$\mathrm{l}$}}{\mkakko{$\mathrm{m}$} \mkakko{$\mathrm{n}$}}$である.ただし$\mkakko{$\mathrm{k}$}$は正の数である.
日本福祉大学 私立 日本福祉大学 2015年 第3問
以下の問いに答えよ.

(1)$x,\ y,\ z$を$0$でない実数とする.$2^x=3^y=6^z$のとき,$\displaystyle \frac{1}{x}+\frac{1}{y}-\frac{1}{z}$を求めよ.
(2)$y=2^x+3 \cdot 2^{-x}$の最小値を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。