タグ「分数」の検索結果

122ページ目:全4648問中1211問~1220問を表示)
埼玉工業大学 私立 埼玉工業大学 2015年 第2問
正六角形$\mathrm{ABCDEF}$において,$\mathrm{DE}$の中点を$\mathrm{M}$,$\mathrm{AM}$の中点を$\mathrm{N}$,$\mathrm{BC}$の中点を$\mathrm{P}$とする.

(1)$\overrightarrow{\mathrm{AM}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AF}}$で表すと
\[ \overrightarrow{\mathrm{AM}}=\frac{[チ]}{[ツ]} \overrightarrow{\mathrm{AB}}+[テ] \overrightarrow{\mathrm{AF}} \]
となる.また,$\overrightarrow{\mathrm{NP}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AF}}$で表すと
\[ \overrightarrow{\mathrm{NP}}=\frac{[ト]}{[ナ]} \overrightarrow{\mathrm{AB}}+\frac{[ニヌ]}{[ネ]} \overrightarrow{\mathrm{AF}} \]
となる.
(2)内積$\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{AD}}=1$のとき
\[ \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AF}}=\frac{[ノハ]}{[ヒ]} \]
となる.
埼玉工業大学 私立 埼玉工業大学 2015年 第3問
白玉$7$個,赤玉$3$個が入っている袋がある.

(1)袋の中から玉を$1$個取り出す操作を$4$回繰り返す.ただし,取り出した玉は毎回元に戻す.このとき,赤玉がちょうど$2$回出る確率は
\[ \frac{\kakkofour{フ}{ヘ}{ホ}{マ}}{5000} \]
である.
(2)袋の中から玉を$1$個取り出す操作を$4$回繰り返す.ただし,取り出した玉は毎回元に戻さない.このとき,赤玉がちょうど$2$回出る確率は
\[ \frac{[ミ]}{[ム][メ]} \]
である.
埼玉工業大学 私立 埼玉工業大学 2015年 第1問
次の$[ ]$にあてはまるものを入れよ.

(1)$\displaystyle \sin \theta+\cos \theta=\frac{\sqrt{5}}{2}$のとき,
\[ \sin \theta \cos \theta=\frac{[ア]}{[イ]}, \tan \theta+\frac{1}{\tan \theta}=[ウ], \sin^4 \theta+\cos^4 \theta=\frac{[エオ]}{[カキ]} \]
である.
(2)恒等式
\[ \frac{3}{(2x-1)(x+1)}=\frac{a}{2x-1}+\frac{b}{x+1} \]
が成り立つなら$a=[ク],\ b=[ケコ]$である.
(3)$xy$平面上の原点に中心を持つ,半径$3$の円に,点$\mathrm{P}(5,\ 0)$から接線を引いた.このとき,接点は$2$つあり,それらの$x$座標は$\displaystyle \frac{[サ]}{[シ]}$である.また,接線の傾きは$\displaystyle \pm \frac{[ス]}{[セ]}$である.
(4)第$n$項が
\[ \frac{4}{n-\sqrt{4n+n^2}} \]
で表される数列の極限値は$[ソタ]$である.
埼玉工業大学 私立 埼玉工業大学 2015年 第4問
放物線$\displaystyle y=\frac{1}{2}x^2+\frac{1}{2}$上の点$\displaystyle \left( 4,\ \frac{17}{2} \right)$における接線を$\ell$とする.

(1)点$(4,\ 0)$を通り,接線$\ell$に直交する直線$m$の方程式は
\[ y=-\frac{[モ]}{[ヤ]}x+[ユ] \]
である.
(2)この放物線と直線$m$の$2$つの交点の$x$座標をそれぞれ$\alpha,\ \beta$(ただし$\alpha>\beta$)とすれば$\alpha$は
\[ \alpha=\frac{-[ヨ]+\sqrt{[ラリ]}}{[ル]} \]
である.
(3)この放物線と直線$m$および直線$x=0$で囲まれた図形のうち第$1$象限にある部分の面積を$S_1$,放物線と直線$m$および直線$x=4$で囲まれた図形の面積を$S_2$とする.このとき$2$つの面積の差は
\[ S_2-S_1=\frac{[レロ]}{3} \]
である.
大阪歯科大学 私立 大阪歯科大学 2015年 第3問
$\triangle \mathrm{AOB}$の頂点$\mathrm{A}$から辺$\mathrm{OB}$に下ろした垂線の足を$\mathrm{H}$とする.$\mathrm{OA}=a$,$\mathrm{OB}=b$,$\mathrm{AB}=c$(ただし,$a<b$),$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$として,$\mathrm{OA}$上に点$\mathrm{D}$を,$\mathrm{OB}$上に点$\mathrm{E}$を$\displaystyle \mathrm{OD}=\mathrm{OE}=\frac{a}{4}$となるようにとる.以下の問に答えよ.

(1)$\cos (\angle \mathrm{AOB})$を$a,\ b,\ c$で表せ.
(2)$\overrightarrow{\mathrm{OF}}=\overrightarrow{\mathrm{OD}}+\overrightarrow{\mathrm{OE}}$となるように点$\mathrm{F}$をとる.$\mathrm{OF}$の延長と$\mathrm{AB}$の交点を$\mathrm{P}$とするとき,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を使って表せ.
(3)$\mathrm{OP}$と$\mathrm{AH}$の交点を$\mathrm{Q}$とするとき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を使って表せ.
大阪薬科大学 私立 大阪薬科大学 2015年 第1問
次の問いに答えなさい.

(1)実数$a,\ b$に関する条件「$a>2$かつ$b \leqq 1$」の否定であるものを次のア~エのうちからひとつ選び,その記号を$[$\mathrm{A]$}$に書きなさい.ただし,該当するものがない場合は「該当なし」と書きなさい.

ア:「$a>2$または$b \leqq 1$」 \qquad イ:「$a \leqq 2$または$b>1$」
ウ:「$a<2$または$b \geqq 1$」 \qquad エ:「$a \leqq 2$かつ$b>1$」

(2)$x$についての整式$P(x)=x^3+kx^2+x+2$を$x-3$で割った余りが$k$となるような定数$k$の値は$k=[$\mathrm{B]$}$である.
(3)$\displaystyle 0<\alpha<\frac{\pi}{2}$で,$\tan \alpha=3$のとき,$\displaystyle \sin \left( 2 \alpha +\frac{\pi}{3} \right)$の値を$c$とすると,$c=[$\mathrm{C]$}$である.
(4)正の実数$x,\ y$が,$x^2+4y=1$を満たすとき,$2 \log_2 x+\log_2 y$のとり得る値の最大値を$d$とすると,$d=[$\mathrm{D]$}$である.
(5)$t$を実数とする.平面上のベクトル$\overrightarrow{a}$と$\overrightarrow{b}$が,$|\overrightarrow{a}|=7$,$|\overrightarrow{b}|=6$,$|\overrightarrow{a}+\overrightarrow{b}|=9$であるとき,$|(1-2t) \overrightarrow{a}+t \overrightarrow{b}|$を最小にする$t$の値を$[あ]$で求めなさい.
大阪薬科大学 私立 大阪薬科大学 2015年 第2問
次の問いに答えなさい.

$a,\ b$を正の実数の定数とし,$2$次関数$f(x)=3x^2+ax+b$を考える.$xy$座標平面上の放物線$y=f(x)$を$C$とし,$C$上の点$(1,\ f(1))$における接線を$\ell$とする.また,$\ell$を$y$軸方向に$3$だけ平行移動した直線を$m$とする.
(1)$C$の頂点の$y$座標を$q$とするとき,$q$は,$a$と$b$を用いて表すと$q=[$\mathrm{E]$}$である.
(2)$C$と$m$で囲まれる部分の面積$S$の値は$S=[$\mathrm{F]$}$である.
(3)$\ell$と$x$軸の交点の$x$座標を$r$とする.このとき,$r$は,$a$と$b$を用いて表すと$r=[$\mathrm{G]$}$である.また,大小$2$個のさいころを投げ,大きいさいころの出た目の数を$a$の値,小さいさいころの出た目の数を$b$の値とするとき,$\displaystyle 0 \leqq r \leqq \frac{1}{6}$である確率$P$の値は$P=[$\mathrm{H]$}$である.ただし,大小$2$個のさいころはそれぞれ$1$から$6$までの目が同様に確からしく出るとする.
(4)$C$と$x$軸の共有点が$2$個であるとき,その共有点の$x$座標をそれぞれ$\alpha,\ \beta$とする($\alpha<\beta$).$C$と$x$軸の共有点が$2$個であり,かつ$a,\ b$それぞれが$1 \leqq a \leqq 6$,$1 \leqq b \leqq 6$を満たす整数であるとき,$\alpha^2+\beta^2$のとり得る値の最大値と最小値を$[い]$で求めなさい.
大阪薬科大学 私立 大阪薬科大学 2015年 第3問
次の問いに答えなさい.

(1)「自然数$m$を$4$で割ったときの余りが$r$であるならば,$m(m+1)$を$4$で割ったときの余りは$r(3-r)$と等しい」ことを$r=0,\ 1,\ 2,\ 3$のそれぞれの場合について$[う]$で示しなさい.ただし,自然数$m$が整数$q,\ r$を用いて
\[ m=4q+r \quad (0 \leqq r<4) \]
と表されるとき,$r$を,$m$を$4$で割ったときの余りという.
(2)$n$を自然数とする.数列$\{a_n\}$は,初項$a_1$が$2$,公差が$2$の等差数列であり,数列$\{b_n\}$は次の条件
\[ b_1=1,\quad b_{n+1}-b_n=\frac{a_{n+1}}{2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定められている.

(i) 一般項$a_n,\ b_n$は,$n$を用いて表すとそれぞれ$a_n=[$\mathrm{I]$}$,$b_n=[$\mathrm{J]$}$である.
(ii) $2$つの集合$A,\ B$を
\[ A=\{a_n \;|\; n \text{は}39 \text{以下の自然数} \},\quad B=\{b_n \;|\; n \text{は}12 \text{以下の自然数} \} \]
とする.このとき,$A$と$B$の共通部分$A \cap B$の要素の個数を$s$とすると,$s=[$\mathrm{K]$}$である.
(iii) $t$を自然数の定数とする.$2$つの集合$C,\ D$を
\[ C=\{a_n \;|\; n \text{は} 100 \text{以下の自然数}\},\quad D=\{b_n \;|\; n \text{は} t \text{以下の自然数}\} \]
とする.このとき,$C$と$D$の和集合$C \cup D$の要素の個数が$111$であるならば,$t$の値は$t=[$\mathrm{L]$}$である.
星薬科大学 私立 星薬科大学 2015年 第1問
$\mathrm{A}$,$\mathrm{B}$の$2$チームが続けて試合を行い,先に$3$勝したほうが優勝とする.各試合で$\mathrm{A}$,$\mathrm{B}$のそれぞれが勝つ確率が$\displaystyle \frac{1}{4}$,引き分ける確率が$\displaystyle \frac{1}{2}$であるとき,次の問に答えよ.

(1)$3$試合目で優勝が決まる確率は$\displaystyle \frac{[$1$]}{[$2$][$3$]}$である.
(2)$5$試合が終了した時点で,まだ優勝が決まらない確率は$\displaystyle \frac{[$4$][$5$][$6$]}{[$7$][$8$][$9$]}$である.
星薬科大学 私立 星薬科大学 2015年 第2問
原点,点$(2,\ 2)$および点$(1,\ \sqrt{3})$を通る円がある.次の問に答えよ.

(1)この円の中心の座標は$([$10$],\ [$11$])$,半径は$[$12$]$である.
(2)点$\mathrm{A}(5,\ 1)$を通り円に接する$2$本の接線を考え,それぞれの接点を$\mathrm{B}$,$\mathrm{C}$とすると,$\triangle \mathrm{ABC}$の面積は$\displaystyle \frac{[$13$] \sqrt{[$14$]}}{[$15$]}$である.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。