タグ「分数」の検索結果

109ページ目:全4648問中1081問~1090問を表示)
上智大学 私立 上智大学 2015年 第3問
次の問いに答えよ.

(1)$\displaystyle x=\frac{3+\sqrt{5}}{2}$とする.
\[ x^2+[ア]x+[イ]=0 \]
である.また,$y=x^2$とするとき,
\[ y^2+[ウ]y+[エ]=0 \]
である.$x^3=ax+b$となる整数$a,\ b$は
\[ a=[オ],\quad b=[カ] \]
である.
(2)$\theta$を実数とするとき,

$\cos 3\theta=[キ] \cos^3 \theta+[ク] \cos \theta,$
$\cos 5\theta=[ケ] \cos^5 \theta+[コ] \cos^3 \theta+[サ] \cos \theta$

である.
(3)$a>1$とする.数列

$a,\ 1 \quad \biggl| \quad a^2,\ a,\ 1 \quad \biggl| \quad a^3,\ a^2,\ a,\ 1 \quad \biggl| \quad \cdots$
第$1$群 \qquad 第$2$群 \qquad\qquad 第$3$群

において,例えば,第$3$群第$1$項は$a^3$であり,これは最初から数えて第$6$項である.$a^{12}$が初めて現れるのは最初から数えて第$[シ]$項である.また最初から数えて第$645$項は第$[ス]$群$[セ]$項である.
(4)次の$\mathrm{a}$,$\mathrm{b}$,$\mathrm{c}$のように,$2$つの試行を連続して行った結果それぞれ事象$A$と事象$B$が起こった.$2$つの試行が独立なものの組み合わせとして最もふさわしいものを一つ選べ.

\mon[$\mathrm{a.}$] 赤い玉が$4$個,白い玉が$4$個入った袋がある.

$A:$玉を$1$個取り出したところ白だった.
$B:$最初の試行で取り出した玉を戻した後,$1$個取り出したところ白だった.

\mon[$\mathrm{b.}$] $30$人のクラスがある.

$A:$無作為に選んだ$\mathrm{X}$さんの誕生日が$1$月$1$日である.
$B:$その次に無作為に選んだ$\mathrm{Y}$さんの誕生日が$1$月$1$日である.

\mon[$\mathrm{c.}$] $5$つの扉があり,それぞれの後ろに猫が一匹いる.猫は黒猫が$3$匹,白猫が$2$匹であり,その場から動かないものとする.

$A:1$つ目の扉を開けたところ,黒猫がいた.
$B:1$つ目の扉を閉じた後,別の扉を開けたところ,白猫がいた.


\begin{screen}
選択肢:

\begin{tabular}{lll}
$1.$ \ $\mathrm{a}$ & $2.$ \ $\mathrm{b}$ & $3.$ \ $\mathrm{c}$ \\
$4.$ \ $\mathrm{ab}$ & $5.$ \ $\mathrm{ac}$ & $6.$ \ $\mathrm{bc}$ \\
$7.$ \ $\mathrm{abc}$ \phantom{AAAAA} & $8.$ \ なし \phantom{AAAAA} & \phantom{AAAAA} \\
\end{tabular}

\end{screen}
上智大学 私立 上智大学 2015年 第1問
次の問いに答えよ.

(1)座標平面上の放物線
\[ y={(x-29)}^2-3600 \]
と$x$軸の共有点の$x$座標は$[ア]$と$[イ]$である.ただし$[ア]<[イ]$とする.
(2)$x+y=1$かつ$0<x<1$を満たす実数$x,\ y$に対して
\[ A=\frac{1}{x}+\frac{1}{y},\quad B=\left( 1+\frac{1}{x^2} \right) \left( 1+\frac{1}{y^2} \right) \]
とおく.

(i) $A$のとり得る値の最小値は$[ウ]$である.
(ii) すべての$x,\ y$に対して
\[ B=[エ]A^2+[オ]A+[カ] \]
が成り立つ.
(iii) $B$のとり得る値の最小値は$[キ]$である.
上智大学 私立 上智大学 2015年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{5}{6}<\log_{10}7<\frac{6}{7}$であることを用いると,$7^{42}$は$[ア]$桁の整数であることがわかる.さらに,$7^2<50$であることと$\displaystyle \log_{10}2>\frac{3}{10}$であることを用いると,$\displaystyle \log_{10}7<\frac{[イ]}{[ウ]}$であることがわかり,これより,$7^{41}$は$[エ]$桁の整数であることがわかる.
(2)$\log_{10}15$に最も近い値は$[あ]$であり,
$\log_{10}17$に最も近い値は$[い]$であり,
$\log_{10}19$に最も近い値は$[う]$である.

ただし,近似値として,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$を用いてよい.
\begin{screen}
$[あ]$,$[い]$,$[う]$の選択肢:

\begin{tabular}{llll}
$\mathrm{(a)} \ 1.13$ \phantom{AAA} & $\mathrm{(b)} \ 1.18$ \phantom{AAA} & $\mathrm{(c)} \ 1.23$ \phantom{AAA} & $\mathrm{(d)} \ 1.28$ \phantom{AAA} \\
$\mathrm{(e)} \ 1.33$ \phantom{AAA} & $\mathrm{(f)} \ 1.38$ \phantom{AAA} & $\mathrm{(g)} \ 1.43$ \phantom{AAA} & $\mathrm{(h)} \ 1.48$ \phantom{AAA}
\end{tabular}

\end{screen}
上智大学 私立 上智大学 2015年 第2問
$a$を正の実数とし,関数$f(x)=\sin x+a \sin 3x$を考える.

(1)$a=2$のとき,
\[ f(x)=[オ] \sin x+[カ] \sin^n x,\quad \text{ただし}n=[キ] \]
である.
(2)$\displaystyle x=\frac{\pi}{2}$で$f(x)$が最大値をとるときの$a$の範囲は$\displaystyle 0<a \leqq \frac{[ク]}{[ケ]}$である.
(3)$\displaystyle a>\frac{[ク]}{[ケ]}$の範囲で,$f(x)$の最大値がもっとも小さくなるのは$\displaystyle a=\frac{[コ]}{[サ]}$のときである.
このとき$f(x)$の最大値は$\displaystyle \frac{\sqrt{[シ]}}{[ス]}$であり,最大値を与える$x$に対して,$\displaystyle \sin x=\frac{\sqrt{[セ]}}{[ソ]}$である.
上智大学 私立 上智大学 2015年 第3問
実数からなる集合$A,\ B,\ C$を以下のように定義する.

$\displaystyle A=\left\{ x \ \biggl| \ \sin \frac{\pi}{2}x>-\frac{1}{7}x \right\}$

$B=\{x \ | \ 0<x<b\}$
$C=\{x \ | \ x \geqq c\}$

ただし,$b,\ c$は正の実数とする.

(1)$-1 [え] A$である.また,$5 [お] A$である.
\begin{screen}
$[え]$,$[お]$の選択肢:
\[ \mathrm{(a)} \ \in \quad \mathrm{(b)} \ \notin \quad \mathrm{(c)} \ \ni \quad \mathrm{(d)} \ \notni \quad \mathrm{(e)} \ = \quad \mathrm{(f)} \ \subset \quad \mathrm{(g)} \ \supset \]
\end{screen}
(2)$B \cap C$が空集合であるための必要十分条件は$[か]$である.
\begin{screen}
$[か]$の選択肢:

\begin{tabular}{llll}
$\mathrm{(a)} \ b=c$ \phantom{AA} & $\mathrm{(b)} \ b<c$ \phantom{AA} & $\mathrm{(c)} \ b \leqq c$ \phantom{AA} & $\mathrm{(d)} \ b>c$ \phantom{AA} \\
$\mathrm{(e)} \ b \geqq c$ & $\mathrm{(f)} \ b \leqq 1$ & $\mathrm{(g)} \ b \leqq 1 \text{かつ} c \geqq 1$ &
\end{tabular}

\end{screen}
(3)$A \supset B$となる$b$のうち,整数で最大のものは$[タ]$である.また,$A \supset C$となる$c$のうち,整数で最小のものは$[チ]$である.
(4)$S$は実数からなる集合とする.「集合$S$が連結である」とは,「$S$のどの$2$つの要素$x,\ y$に対しても,

条件:実数$z$が$x<z<y$を満たすならば$z \in S$

が成り立つ」ことである.
$A \cap B$が連結であるような$b$のうち,整数で最大のものは$[ツ]$である.また,$A \cap C$が連結であるような$c$のうち,整数で最小のものは$[テ]$である.
上智大学 私立 上智大学 2015年 第4問
$xyz$空間において,$xy$平面上に$4$点
\[ \mathrm{A}_1(1,\ 0,\ 0),\quad \mathrm{B}_1(0,\ 1,\ 0),\quad \mathrm{C}_1(-1,\ 0,\ 0),\quad \mathrm{D}_1(0,\ -1,\ 0) \]
を頂点とする正方形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$がある.$0<\theta<\pi$とし,この正方形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$を$xy$平面上で原点を中心に角$\theta$だけ回転させた後で$z$軸の正の方向に$2$だけ平行移動した正方形を$\mathrm{A}_2 \mathrm{B}_2 \mathrm{C}_2 \mathrm{D}_2$とする.

動点$\mathrm{P}_1$,$\mathrm{P}_2$が,それぞれ点$\mathrm{A}_1$,$\mathrm{A}_2$から同時に出発し,正方形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$,$\mathrm{A}_2 \mathrm{B}_2 \mathrm{C}_2 \mathrm{D}_2$の周上を,同じ速さで同じ向きに一周する.このとき,線分$\mathrm{P}_1 \mathrm{P}_2$が動いてできる曲面と正方形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$,$\mathrm{A}_2 \mathrm{B}_2 \mathrm{C}_2 \mathrm{D}_2$とで囲まれる立体を$V$とする.

(1)線分$\mathrm{P}_1 \mathrm{P}_2$の長さの最大値は$\sqrt{[ト]+[ナ] [き]}$であり,線分$\mathrm{P}_1 \mathrm{P}_2$の長さの最小値は$\sqrt{[ニ]+[ヌ] [く]}$である.
(2)$0<h<2$とするとき,平面$z=h$による立体$V$の断面は,一辺の長さが
\[ \sqrt{[ネ]+\left( [ノ]h^2+[ハ]h \right) \left( 1-[け] \right)} \]
の正方形であり,その一辺の長さは$h=[ヒ]$のとき最小である.

(3)立体$V$の体積は$\displaystyle \frac{[フ]}{[ヘ]}+\frac{[ホ]}{[マ]} [こ]$である.

(4)$\theta$が$\pi$に限りなく近づくとき,立体$V$の体積は$\displaystyle \frac{[ミ]}{[ム]}$に収束する.
\begin{screen}
$[き]$~$[こ]$の選択肢:

$\mathrm{(a)} \ \sin \theta \quad \mathrm{(b)} \ \cos \theta \quad \mathrm{(c)} \ \tan \theta \quad \mathrm{(d)} \ \sin^2 \theta \quad \mathrm{(e)} \ \cos \theta \sin \theta$
$\displaystyle \mathrm{(f)} \ \frac{1}{\sin \theta} \quad \mathrm{(g)} \ \frac{1}{\cos \theta} \quad \mathrm{(h)} \ \frac{1}{\tan \theta}$

\end{screen}
(図は省略)
上智大学 私立 上智大学 2015年 第1問
次の問いに答えよ.

(1)数列$\{a_n\}$の第$1$項から第$n$項までの和$S_n$が$3S_n=a_n+2n-1$を満たすならば,
\[ a_n=\frac{[ア]}{[イ]} \left( \frac{[ウ]}{[エ]} \right)^n+\frac{[オ]}{[カ]} \]
である.
(2)$t$を実数とする.座標空間において,点$(2t,\ 1,\ -t)$を通りベクトル$(-1,\ 2,\ 1)$と平行な直線を$\ell$とする.点$\mathrm{P}$の座標を$(0,\ 2,\ 0)$とする.

(i) 点$\mathrm{P}$から$\ell$に垂線$\mathrm{PH}$を下ろすとき,
\[ \mathrm{PH}^2=\frac{[キ]}{[ク]}t^2+[ケ]t+\frac{[コ]}{[サ]} \]
である.
(ii) 点$\mathrm{P}$を中心とする半径$2$の球面を$S$とする.$S$と$\ell$が異なる$2$点で交わるとき,その$2$点間の距離は$\displaystyle t=\frac{[シ]}{[ス]}$のとき最大値をとる.
上智大学 私立 上智大学 2015年 第2問
$f(x)=x^3-3x^2-x+3$とし,座標平面上の曲線$y=f(x)$の点$\mathrm{P}(p,\ f(p))$における接線を$\ell$とする.ただし,$p \neq 3$とする.放物線$C:y=ax^2+bx+c$は点$(3,\ 0)$を通り,直線$\ell$と$\mathrm{P}$で接する.

(1)$a,\ b,\ c$をそれぞれ$p$の式で表すと,
\[ a=[セ]p,\ b=[ソ]p^2+[タ]p+[チ],\ c=[ツ]p^2+[テ] \]
である.
(2)$\displaystyle \frac{1}{2}<p<3$とする.$C$およびその下側の部分で,$C$と直線$\displaystyle x=\frac{1}{2}$および$x$軸で囲まれる図形の面積を$S_1$とおき,$C$およびその上側の部分で,$C$と$x$軸で囲まれる図形の面積を$S_2$とおく.このとき,
\[ S_1-S_2=\frac{25}{24}\left( [ト]p^2+[ナ]p+[ニ] \right) \]
であり,$S_1=S_2$となる$p$の値は
\[ p=\frac{[ヌ]}{[ネ]}+\frac{\sqrt{[ノ]}}{[ハ]} \]
である.
(3)$p=1$のとき,
\[ S_1+S_2=\frac{[ヒ]}{[フ]} \]
である.
上智大学 私立 上智大学 2015年 第1問
次の問いに答えよ.

(1)関数$f(x),\ g(x)$が次の$2$つの式を満たしている.ただし,$a$は定数とする.
\[ \left\{ \begin{array}{l}
\int_1^x f(t) \, dt=xg(x)-2ax+2 \phantom{\frac{[ ]}{[ ]}} \\
g(x)=x^2-x \int_0^1 f(t) \, dt-3 \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
このとき,$a=[ア]$であり,
\[ f(x)=[イ]x^2+[ウ]x+[エ] \]
である.
(2)$\displaystyle c(n)=\frac{3n^2+174n+231}{n^2+3n+2}$とおく.$c(n)$が整数となるような自然数$n$は$[オ]$個存在する.また,これら$[オ]$個の自然数のうちで最も大きいものを$n^{*}$と表すと,$n^{*}=[カ]$,$c(n^{*})=[キ]$である.
上智大学 私立 上智大学 2015年 第2問
座標平面上の点$(\alpha,\ 1) (\alpha>0)$を中心とする円$C$と放物線$\displaystyle y=\frac{1}{2}x^2$が共に点$\displaystyle \mathrm{P} \left( t,\ \frac{1}{2}t^2 \right)$で直線$\ell$と接している.

(1)$\alpha$を$t$の式で表すと
\[ \alpha=\frac{[ク]}{[ケ]}t^3 \]
である.
以下では,$C$が$x$軸と接する場合を考える.$C$と$x$軸の接点を$\mathrm{H}$とする.

(2)$\displaystyle \alpha=\frac{[コ]}{[サ]} \sqrt{[シ]}$である.
(3)$\ell$の方程式は
\[ y=\sqrt{[ス]}x+\frac{[セ]}{[ソ]} \]
である.
(4)$C$の弧$\mathrm{PH}$のうちの短い方と放物線$\displaystyle y=\frac{1}{2}x^2$および$x$軸とで囲まれる図形の面積は
\[ \frac{[タ]}{[チ]} \sqrt{[ツ]}+\frac{[テ]}{[ト]}\pi \]
である.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。