タグ「分数」の検索結果

108ページ目:全4648問中1071問~1080問を表示)
慶應義塾大学 私立 慶應義塾大学 2015年 第5問
数列$a_n (1 \leqq n)$に対して新しい数列$b_n (1 \leqq n)$をつぎのように定義する.まず$b_1=1$とする.つぎに$n>1$に対して
\[ a_{n-h}+b_h \quad (1 \leqq h \leqq \frac{n}{2}) \]
のなかで最小のものを$b_n$とする.さらに新しい数列$c_n (1 \leqq n)$をつぎのように定義する.
\[ c_n=b_{n+1}-b_n \quad (1 \leqq n) \]
さて$a_n=n^2$のときを考えよう.このとき$b_n$はつぎのようになる.

$1,\ 2,\ 5,\ [$101$][$102$],\ 11, 14,\ 21,\ 22,\ [$103$][$104$],\ 36,\ 47,\ 50,$
$63,\ 70,\ 85,\ 86,\ 103,\ 112,\ 131,\ [$105$][$106$][$107$],\ \cdots$

$c_n=5$をみたす$n$は小さい順に
\[ n=[$108$][$109$],\ [$110$][$111$],\ [$112$][$113$],\ 39,\ \cdots \]
である.
立教大学 私立 立教大学 2015年 第1問
次の空欄$[ア]$~$[コ]$に当てはまる数または式を記入せよ.

(1)$2$つの自然数$p,\ q$が$p^2+pq+q^2=19$を満たすとき,$p+q=[ア]$である.
(2)$0 \leqq \theta<2\pi$のとき,$\sin^2 \theta+\cos \theta-1$の最大値は$[イ]$であり,最小値は$[ウ]$である.
(3)$\displaystyle S=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+\cdots +\frac{1}{\sqrt{45}+\sqrt{49}}$とすると,$S$の値は$[エ]$である.
(4)方程式$\log_{\sqrt{2}}(2-x)+\log_2 (x+1)=1$の解をすべて求めると,$x=[オ]$である.
(5)等式$\displaystyle f(x)=x^2+3 \int_0^1 f(t) \, dt$を満たす関数は,$f(x)=[カ]$である.
(6)座標空間における$4$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 3)$,$\mathrm{D}(x,\ 4,\ 5)$が同一平面上にあるとき,$x=[キ]$である.
(7)$3$次方程式$x^3-x^2+ax+b=0$の解の$1$つが$1+i$のとき,$a=[ク]$,$b=[ケ]$である.ただし,$a,\ b$は実数とし,$i$は虚数単位とする.
(8)三角形$\mathrm{ABC}$の辺の長さが$\mathrm{AB}=4$,$\mathrm{BC}=5$,$\mathrm{CA}=6$のとき,三角形$\mathrm{ABC}$の面積は$[コ]$である.
立教大学 私立 立教大学 2015年 第2問
座標平面上に$2$つの放物線$C_1:y=x^2$と$C_2:y=ax^2+bx+c (a \neq 0)$がある.この$2$つの放物線$C_1$と$C_2$が$x=-1$で交わり,その点で各々の接線が直交するとき,次の問に答えよ.

(1)$b,\ c$をそれぞれ$a$を用いて表せ.
(2)$2$つの放物線$C_1$と$C_2$が,さらに$\displaystyle x=\frac{1}{4}$で交わるときの$a$の値を求めよ.
(3)$a$を$(2)$で求めた値とするとき,放物線$C_2$の$x=-1$での接線$\ell_1$,$\displaystyle x=\frac{1}{4}$での接線$\ell_2$と$C_2$で囲まれた図形の面積$S$を求めよ.
立教大学 私立 立教大学 2015年 第3問
座標平面上の$2$点$\mathrm{P}$,$\mathrm{Q}$を$\mathrm{P}(-1,\ 2)$,$\mathrm{Q}(1,\ 2)$とする.点$\mathrm{A}$が点$(1,\ 0)$から出発し,点$\mathrm{O}(0,\ 0)$を中心とする半径$1$の円周$C$上を次のルールで動くとする.

【ルール】
\begin{itemize}
$1$個のさいころを$1$回投げて$1$回の試行とする.
$a$の目が出たら,反時計回りに$a \times {30}^\circ$回転する.
\end{itemize}

このとき,次の問に答えよ.

(1)三角形$\mathrm{PQA}$の面積が$\displaystyle \frac{3}{2}$となるような$\mathrm{A}$の座標をすべて求めよ.
(2)三角形$\mathrm{PQA}$が直角三角形となるような$\mathrm{A}$の座標をすべて求めよ.
(3)$2$回の試行を行う.$2$回の試行の後,三角形$\mathrm{PQA}$が直角三角形となる確率を求めよ.
(4)$3$回の試行を行う.$3$回の試行の後,三角形$\mathrm{PQA}$の面積が$\displaystyle \frac{3}{2}$となる確率を求めよ.
立教大学 私立 立教大学 2015年 第1問
次の空欄$[ア]$~$[コ]$に当てはまる数または式を記入せよ.

(1)$\displaystyle \int_2^4 (x^2+ax+2) \, dx=\frac{14}{3}$を満たす$a$の値は$[ア]$である.
(2)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$のとき,$\cos \theta+\sqrt{3} \sin \theta$の最大値は$[イ]$であり,最小値は$[ウ]$である.
(3)実数$x$が$0<x<1$かつ${(\log_2 x)}^2+\log_2 x-6=0$を満たすとき,$x$の値は$[エ]$である.
(4)$3$次方程式$(x-1)(x^2+ax+a+2)=0$が$2$重解をもつとき,$a$の値をすべて求めると,$[オ]$である.
(5)実数$a,\ b$を用いて$\displaystyle \frac{1}{2+i}+\frac{1}{3+4i}=a+bi$と表すとき,$a=[カ]$であり,$b=[キ]$である.ただし,$i$は虚数単位とする.
(6)$3$つのさいころを同時に投げるとき,ちょうど$2$つのさいころが同じ目になる確率は$[ク]$である.
(7)ベクトル$(2,\ a,\ b)$が$2$つのベクトル$(1,\ -1,\ 3)$,$(-2,\ 1,\ 1)$に垂直であるとき,$(a,\ b)=[ケ]$である.
(8)底辺の長さが$a$,高さが$b$の三角形が$2a+b=6$を満たすとき,三角形の面積の最大値は$[コ]$である.
中央大学 私立 中央大学 2015年 第4問
表が出る確率が$\displaystyle q \ \left( q<\frac{1}{2} \right)$,裏が出る確率が$1-q$であるコインを使い,$xy$平面上の動点$P$を次の規則で動かす.
\begin{itemize}
動点$P$は原点から出発する.
コインを投げて表が出ると,$x$軸の正の方向に$1$移動する.
コインを投げて裏が出ると,$y$軸の正の方向に$1$移動する.
\end{itemize}
このコインを$4$回投げたとき,動点$P$が点$\mathrm{A}(2,\ 2)$に到着する確率は$\displaystyle \frac{8}{27}$である.このとき,以下の設問に答えよ.なお,解答の数値は分数および累乗のままでよい.

(1)このコインを$1$回投げたとき,表が出る確率$q$を求めよ.
(2)このコインを$8$回投げたとき,
動点$P$が,途中で点$\mathrm{A}(2,\ 2)$を通らずに,点$\mathrm{B}(4,\ 4)$に到着する確率
を求めよ.
上智大学 私立 上智大学 2015年 第1問
次の問いに答えよ.

(1)$(ⅰ)$ \ $a>0$,$a \neq 1$,$M>0$である実数$a,\ M$に対し,$a$を底とする$M$の対数$\log_a M$の定義を述べよ.
$(ⅱ)$ $a>0$,$b>0$,$c>0$,$a \neq 1$,$c \neq 1$である実数$a,\ b,\ c$に対し,底の変換公式
\[ \log_a b=\frac{\log_c b}{\log_c a} \]
が成り立つことを示せ.
(2)正の実数$x$の自然対数$\log x$は
\[ \log x=\int_1^x \frac{1}{t} \, dt \]
と表される.これを用いて,正の実数$x,\ y$に対し
\[ \log (xy)=\log x+\log y \]
が成り立つことを示せ.
中央大学 私立 中央大学 2015年 第3問
曲線$C_1:y=x^3$を考える.点$\mathrm{A}(-1,\ -1)$における$C_1$の接線$\ell$は,$\mathrm{A}$とは異なる点$\mathrm{B}$で$C_1$と交わっている.このとき,以下の設問に答えよ.ただし
\[ \int x^3 \, dx=\frac{x^4}{4}+L \quad (L \text{は積分定数}) \]
である.

(1)点$\mathrm{B}$の座標を求めよ.
(2)実数の定数$a,\ b,\ c$に対し,曲線$C_2:y=ax^2+bx+c$を考える.$C_2$が点$\mathrm{A}$,$\mathrm{B}$を通り,さらに$\mathrm{A}$と$\mathrm{B}$との間の点$\mathrm{E}$($\mathrm{E} \neq \mathrm{A},\ \mathrm{E} \neq \mathrm{B}$)で$C_1$と交わるとき,$c$が満たす必要十分条件を求めよ.
(3)$C_2$および$\mathrm{E}$は前問と同様とし,$c$は前問の必要十分条件を満たしている.「$\mathrm{A}$,$\mathrm{E}$の間で曲線$C_1$と$C_2$とで囲まれる領域の面積」を$S_1$,「$\mathrm{E}$,$\mathrm{B}$の間で曲線$C_1$と$C_2$とで囲まれる領域の面積」を$S_2$とする.$S_1=S_2$であるとき,$c$の値を求めよ.
上智大学 私立 上智大学 2015年 第3問
ある工場では製品$\mathrm{X}$,$\mathrm{Y}$を生産している.それらを生産するには,原料$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が必要である.$\mathrm{X}$を$1 \, \mathrm{kg}$生産するためには,$\mathrm{A}$が$1 \, \mathrm{kg}$,$\mathrm{B}$が$4 \, \mathrm{kg}$,$\mathrm{C}$が$1 \, \mathrm{kg}$必要である.$\mathrm{Y}$を$1 \, \mathrm{kg}$生産するためには,$\mathrm{A}$が$3 \, \mathrm{kg}$,$\mathrm{B}$が$3 \, \mathrm{kg}$,$\mathrm{C}$が$2 \, \mathrm{kg}$必要である.原料の在庫はそれぞれ,$\mathrm{A}$が$23 \, \mathrm{kg}$,$\mathrm{B}$が$47 \, \mathrm{kg}$,$\mathrm{C}$が$c \, \mathrm{kg}$である.また,$\mathrm{X}$を生産すると$1 \, \mathrm{kg}$あたり$p$万円,$\mathrm{Y}$を生産すると$1 \, \mathrm{kg}$あたり$q$万円の利益がある.ただし,$c>0$,$p>0$,$q>0$とする.以下,在庫にある原料のみを用いて生産を行うものとする.

(1)$c=17$,$p=2$,$q=5$のとき,$\mathrm{X}$を$[ヌ] \, \mathrm{kg}$,$\mathrm{Y}$を$[ネ] \, \mathrm{kg}$生産すれば,最大の利益を得る.
(2)$c=17$のとき,最大の利益を得る$\mathrm{X}$と$\mathrm{Y}$の生産量の組がただ一つに定まるための必要十分条件を$\displaystyle \frac{p}{q}$の値を用いて表すと,

$\displaystyle 0<\frac{p}{q}<\frac{[ノ]}{[ハ]} \quad \text{または} \quad \frac{[ヒ]}{[フ]}<\frac{p}{q}<\frac{[ヘ]}{[ホ]}$

$\displaystyle \text{または} \quad \frac{[マ]}{[ミ]}<\frac{p}{q}<\frac{[ム]}{[メ]} \quad \text{または} \quad \frac{[モ]}{[ヤ]}<\frac{p}{q}$


である.ただし,$\displaystyle 0<\frac{[ヒ]}{[フ]}<\frac{[マ]}{[ミ]}<\frac{[モ]}{[ヤ]}$とする.

(3)$\mathrm{X}$と$\mathrm{Y}$の生産量にかかわらず原料$\mathrm{C}$が余るための必要十分条件を$c$の値を用いて表すと,$c>[ユ]$である.
上智大学 私立 上智大学 2015年 第2問
座標平面上で$2$つのベクトル
\[ \overrightarrow{p}=(p,\ 0),\quad \overrightarrow{q}=(q,\ 0) \]
を考える.ただし,$0<p<1$,$q>1$とする.$\overrightarrow{x}$を単位ベクトルとして,以下の問に答えよ.

(1)任意の$\overrightarrow{x}$について,$\overrightarrow{x}$と$\overrightarrow{x}-\overrightarrow{p}$は直交しないことを示せ.
(2)$\overrightarrow{x}$と$\overrightarrow{x}-\overrightarrow{q}$が直交するとき,$|\overrightarrow{x}-\overrightarrow{q}|$を$q$を用いて表せ.
(3)$\overrightarrow{p},\ \overrightarrow{q}$が次の条件をみたすとする.
条件:任意の$\overrightarrow{x}$について$|\overrightarrow{x}-\overrightarrow{p}|:|\overrightarrow{x}-\overrightarrow{q}|=1:2$となる.

(i) $p$および$q$の値を求めよ.
(ii) $\overrightarrow{x}$と$\overrightarrow{x}-\overrightarrow{q}$が直交するとき,原点を始点として$\overrightarrow{x}$,$\overrightarrow{p}$,$\overrightarrow{q}$を図示せよ.
(iii) 実数$a$に対して,
\[ \overrightarrow{s}=\frac{\overrightarrow{x}-\overrightarrow{p}}{|\overrightarrow{x}-\overrightarrow{p}|^3}-a \frac{\overrightarrow{x}-\overrightarrow{q}}{|\overrightarrow{x}-\overrightarrow{q}|^3} \]
とおく.任意の$\overrightarrow{x}$について,$\overrightarrow{x}$と$\overrightarrow{s}$が平行となるときの$a$の値を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。