「分数」について
タグ「分数」の検索結果
(1ページ目:全4648問中1問~10問を表示) 国立 東京海洋大学 2016年 第1問
数列$\{a_n\},\ \{b_n\}$を以下で定める.
$a_1=2,\quad b_1=1$
$\left\{ \begin{array}{l}
a_{n+1}=2a_n+3b_n \\
b_{n+1}=a_n+2b_n
\end{array} \right. \quad (n=1,\ 2,\ 3,\ \cdots)$
(1)$n=1,\ 2,\ 3,\ \cdots$について,
$a_n+\sqrt{3}b_n={(2+\sqrt{3})}^n$
$a_n-\sqrt{3}b_n={(2-\sqrt{3})}^n$
が成り立つことを示せ.
(2)$\displaystyle \frac{b_n}{a_n}$を$n$を用いて表せ.
(3)数列$\{e_n\}$を
\[ e_n=\frac{\sqrt{3} \, b_n}{a_n}-1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定めるとき,$n \geqq 3$ならば
\[ |e_n|<0.001 \]
であることを示せ.ただし,$\displaystyle 0.071<\frac{2-\sqrt{3}}{2+\sqrt{3}}<0.072$を用いてもよい.
$a_1=2,\quad b_1=1$
$\left\{ \begin{array}{l}
a_{n+1}=2a_n+3b_n \\
b_{n+1}=a_n+2b_n
\end{array} \right. \quad (n=1,\ 2,\ 3,\ \cdots)$
(1)$n=1,\ 2,\ 3,\ \cdots$について,
$a_n+\sqrt{3}b_n={(2+\sqrt{3})}^n$
$a_n-\sqrt{3}b_n={(2-\sqrt{3})}^n$
が成り立つことを示せ.
(2)$\displaystyle \frac{b_n}{a_n}$を$n$を用いて表せ.
(3)数列$\{e_n\}$を
\[ e_n=\frac{\sqrt{3} \, b_n}{a_n}-1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定めるとき,$n \geqq 3$ならば
\[ |e_n|<0.001 \]
であることを示せ.ただし,$\displaystyle 0.071<\frac{2-\sqrt{3}}{2+\sqrt{3}}<0.072$を用いてもよい.
国立 東京海洋大学 2016年 第2問
座標平面上に$4$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(0,\ 2)$,$\mathrm{P}(t,\ -t)$,$\mathrm{Q}(0,\ -t)$(ただし,$t>0$)をとる.$\angle \mathrm{APB}=\theta$とおく.
(1)$\tan \angle \mathrm{APQ}$を$t$を用いて表せ.
(2)$\tan \theta$を$t$を用いて表せ.
(3)$\displaystyle \frac{1}{\tan \theta}$を考えることにより,$\tan \theta$の最大値とそのときの$t$の値を求めよ.
(1)$\tan \angle \mathrm{APQ}$を$t$を用いて表せ.
(2)$\tan \theta$を$t$を用いて表せ.
(3)$\displaystyle \frac{1}{\tan \theta}$を考えることにより,$\tan \theta$の最大値とそのときの$t$の値を求めよ.
国立 東京海洋大学 2016年 第3問
座標平面上に放物線$C:y=x^2$がある.点$\mathrm{P}(t,\ t^2)$(ただし,$t>0$)における$C$の接線を$\ell$とし,$\ell$が$x$軸,$y$軸と交わる点をそれぞれ$\mathrm{M}$,$\mathrm{N}$とする.$\mathrm{M}$を通り$\ell$と直交する直線が,$y$軸,直線$x=t$と交わる点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.
(1)$\angle \mathrm{QPR}$は$\ell$により二等分されることを示せ.
(2)$\triangle \mathrm{PQR}$が正三角形になるような$t$の値を求めよ.
(3)四角形$\mathrm{PQNR}$の面積を$S_1$とし,線分$\mathrm{PQ}$,$y$軸および$C$で囲まれる図形の面積を$S_2$とする.$(2)$のとき,$\displaystyle \frac{S_2}{S_1}$の値を求めよ.
(1)$\angle \mathrm{QPR}$は$\ell$により二等分されることを示せ.
(2)$\triangle \mathrm{PQR}$が正三角形になるような$t$の値を求めよ.
(3)四角形$\mathrm{PQNR}$の面積を$S_1$とし,線分$\mathrm{PQ}$,$y$軸および$C$で囲まれる図形の面積を$S_2$とする.$(2)$のとき,$\displaystyle \frac{S_2}{S_1}$の値を求めよ.
国立 京都大学 2016年 第1問
次の問いに答えよ.
(1)$n$を$2$以上の自然数とするとき,関数
\[ f_n(\theta)=(1+\cos \theta) \sin^{n-1} \theta \]
の$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$における最大値$M_n$を求めよ.
(2)$\displaystyle \lim_{n \to \infty}{(M_n)}^n$を求めよ.
(1)$n$を$2$以上の自然数とするとき,関数
\[ f_n(\theta)=(1+\cos \theta) \sin^{n-1} \theta \]
の$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$における最大値$M_n$を求めよ.
(2)$\displaystyle \lim_{n \to \infty}{(M_n)}^n$を求めよ.
国立 京都大学 2016年 第4問
$xyz$空間において,平面$y=z$の中で
\[ |x| \leqq \frac{e^y+e^{-y}}{2}-1,\quad 0 \leqq y \leqq \log a \]
で与えられる図形$D$を考える.ただし$a$は$1$より大きい定数とする.
この図形$D$を$y$軸のまわりに$1$回転させてできる立体の体積を求めよ.
\[ |x| \leqq \frac{e^y+e^{-y}}{2}-1,\quad 0 \leqq y \leqq \log a \]
で与えられる図形$D$を考える.ただし$a$は$1$より大きい定数とする.
この図形$D$を$y$軸のまわりに$1$回転させてできる立体の体積を求めよ.
国立 東京海洋大学 2016年 第5問
$f(x)=\sqrt{x}e^{-\frac{x}{2}}$(ただし,$x>0$)に対し,座標平面上の曲線$C:y=f(x)$を考える.
(1)$f(x)$の極値を求めよ.
(2)曲線$C$,$2$直線$x=t$,$x=t+1$(ただし,$t>0$)および$x$軸で囲まれる図形を,$x$軸の周りに$1$回転して得られる立体の体積$V$を$t$を用いて表せ.
(3)$V$の最大値を求めよ.
(1)$f(x)$の極値を求めよ.
(2)曲線$C$,$2$直線$x=t$,$x=t+1$(ただし,$t>0$)および$x$軸で囲まれる図形を,$x$軸の周りに$1$回転して得られる立体の体積$V$を$t$を用いて表せ.
(3)$V$の最大値を求めよ.
国立 一橋大学 2016年 第2問
$\theta$を実数とし,数列$\{a_n\}$を
\[ a_1=1,\quad a_2=\cos \theta,\quad a_{n+2}=\frac{3}{2}a_{n+1}-a_n \]
により定める.すべての$n$について$a_n=\cos (n-1) \theta$が成り立つとき,$\cos \theta$を求めよ.
\[ a_1=1,\quad a_2=\cos \theta,\quad a_{n+2}=\frac{3}{2}a_{n+1}-a_n \]
により定める.すべての$n$について$a_n=\cos (n-1) \theta$が成り立つとき,$\cos \theta$を求めよ.
国立 京都大学 2016年 第5問
$xy$平面上の$6$個の点$(0,\ 0)$,$(0,\ 1)$,$(1,\ 0)$,$(1,\ 1)$,$(2,\ 0)$,$(2,\ 1)$が図のように長さ$1$の線分で結ばれている.動点$\mathrm{X}$は,これらの点の上を次の規則に従って$1$秒ごとに移動する.
\mon[規則:] 動点$\mathrm{X}$は,そのときに位置する点から出る長さ$1$の線分によって結ばれる図の点のいずれかに,等しい確率で移動する.
例えば,$\mathrm{X}$が$(2,\ 0)$にいるときは,$(1,\ 0)$,$(2,\ 1)$のいずれかに$\displaystyle \frac{1}{2}$の確率で移動する.また$\mathrm{X}$が$(1,\ 1)$にいるときは,$(0,\ 1)$,$(1,\ 0)$,$(2,\ 1)$のいずれかに$\displaystyle \frac{1}{3}$の確率で移動する.
時刻$0$で動点$\mathrm{X}$が$\mathrm{O}=(0,\ 0)$から出発するとき,$n$秒後に$\mathrm{X}$の$x$座標が$0$である確率を求めよ.ただし$n$は$0$以上の整数とする.
(図は省略)
\mon[規則:] 動点$\mathrm{X}$は,そのときに位置する点から出る長さ$1$の線分によって結ばれる図の点のいずれかに,等しい確率で移動する.
例えば,$\mathrm{X}$が$(2,\ 0)$にいるときは,$(1,\ 0)$,$(2,\ 1)$のいずれかに$\displaystyle \frac{1}{2}$の確率で移動する.また$\mathrm{X}$が$(1,\ 1)$にいるときは,$(0,\ 1)$,$(1,\ 0)$,$(2,\ 1)$のいずれかに$\displaystyle \frac{1}{3}$の確率で移動する.
時刻$0$で動点$\mathrm{X}$が$\mathrm{O}=(0,\ 0)$から出発するとき,$n$秒後に$\mathrm{X}$の$x$座標が$0$である確率を求めよ.ただし$n$は$0$以上の整数とする.
(図は省略)
国立 東京大学 2016年 第2問
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$つのチームが参加する野球の大会を開催する.以下の方式で試合を行い,$2$連勝したチームが出た時点で,そのチームを優勝チームとして大会は終了する.
(i) $1$試合目で$\mathrm{A}$と$\mathrm{B}$が対戦する.
(ii) $2$試合目で,$1$試合目の勝者と,$1$試合目で待機していた$\mathrm{C}$が対戦する.
(iii) $k$試合目で優勝チームが決まらない場合は,$k$試合目の勝者と,$k$試合目で待機していたチームが$k+1$試合目で対戦する.ここで$k$は$2$以上の整数とする.
なお,すべての対戦において,それぞれのチームが勝つ確率は$\displaystyle \frac{1}{2}$で,引き分けはないものとする.
(1)ちょうど$5$試合目で$\mathrm{A}$が優勝する確率を求めよ.
(2)$n$を$2$以上の整数とする.ちょうど$n$試合目で$\mathrm{A}$が優勝する確率を求めよ.
(3)$m$を正の整数とする.総試合数が$3m$回以下で$\mathrm{A}$が優勝する確率を求めよ.
(i) $1$試合目で$\mathrm{A}$と$\mathrm{B}$が対戦する.
(ii) $2$試合目で,$1$試合目の勝者と,$1$試合目で待機していた$\mathrm{C}$が対戦する.
(iii) $k$試合目で優勝チームが決まらない場合は,$k$試合目の勝者と,$k$試合目で待機していたチームが$k+1$試合目で対戦する.ここで$k$は$2$以上の整数とする.
なお,すべての対戦において,それぞれのチームが勝つ確率は$\displaystyle \frac{1}{2}$で,引き分けはないものとする.
(1)ちょうど$5$試合目で$\mathrm{A}$が優勝する確率を求めよ.
(2)$n$を$2$以上の整数とする.ちょうど$n$試合目で$\mathrm{A}$が優勝する確率を求めよ.
(3)$m$を正の整数とする.総試合数が$3m$回以下で$\mathrm{A}$が優勝する確率を求めよ.
国立 一橋大学 2016年 第5問
次の$\tocichi$,$\tocni$のいずれか一方を選択して解答せよ.
\mon[$\tocichi$] 平面上の$2$つのベクトル$\overrightarrow{a}$と$\overrightarrow{b}$は零ベクトルではなく,$\overrightarrow{a}$と$\overrightarrow{b}$のなす角度は${60}^\circ$である.このとき
\[ r=\frac{|\overrightarrow{a}+2 \overrightarrow{b}|}{|2 \overrightarrow{a}+\overrightarrow{b}|} \]
のとりうる値の範囲を求めよ.
\mon[$\tocni$] $x$は$0$以上の整数である.次の表は$2$つの科目$\mathrm{X}$と$\mathrm{Y}$の試験を受けた$5$人の得点をまとめたものである.
\begin{tabular}{|l||c|c|c|c|c|}
\hline
& $①$ & $②$ & $③$ & $④$ & $⑤$ \\ \hline
科目$\mathrm{X}$の得点 & $x$ & $6$ & $4$ & $7$ & $4$ \\ \hline
科目$\mathrm{Y}$の得点 & $9$ & $7$ & $5$ & $10$ & $9$ \\ \hline
\end{tabular}
(i) $2n$個の実数$a_1,\ a_2,\ \cdots,\ a_n,\ b_1,\ b_2,\ \cdots,\ b_n$について,$\displaystyle a=\frac{1}{n} \sum_{k=1}^n a_k$,$\displaystyle b=\frac{1}{n} \sum_{k=1}^n b_k$とすると,
\[ \sum_{k=1}^n (a_k-a)(b_k-b)=\sum_{k=1}^n a_kb_k-nab \]
が成り立つことを示せ.
(ii) 科目$\mathrm{X}$の得点と科目$\mathrm{Y}$の得点の相関係数$r_{\mathrm{XY}}$を$x$で表せ.
(iii) $x$の値を$2$増やして$r_{\mathrm{XY}}$を計算しても値は同じであった.このとき,$r_{\mathrm{XY}}$の値を四捨五入して小数第$1$位まで求めよ.
\mon[$\tocichi$] 平面上の$2$つのベクトル$\overrightarrow{a}$と$\overrightarrow{b}$は零ベクトルではなく,$\overrightarrow{a}$と$\overrightarrow{b}$のなす角度は${60}^\circ$である.このとき
\[ r=\frac{|\overrightarrow{a}+2 \overrightarrow{b}|}{|2 \overrightarrow{a}+\overrightarrow{b}|} \]
のとりうる値の範囲を求めよ.
\mon[$\tocni$] $x$は$0$以上の整数である.次の表は$2$つの科目$\mathrm{X}$と$\mathrm{Y}$の試験を受けた$5$人の得点をまとめたものである.
\begin{tabular}{|l||c|c|c|c|c|}
\hline
& $①$ & $②$ & $③$ & $④$ & $⑤$ \\ \hline
科目$\mathrm{X}$の得点 & $x$ & $6$ & $4$ & $7$ & $4$ \\ \hline
科目$\mathrm{Y}$の得点 & $9$ & $7$ & $5$ & $10$ & $9$ \\ \hline
\end{tabular}
(i) $2n$個の実数$a_1,\ a_2,\ \cdots,\ a_n,\ b_1,\ b_2,\ \cdots,\ b_n$について,$\displaystyle a=\frac{1}{n} \sum_{k=1}^n a_k$,$\displaystyle b=\frac{1}{n} \sum_{k=1}^n b_k$とすると,
\[ \sum_{k=1}^n (a_k-a)(b_k-b)=\sum_{k=1}^n a_kb_k-nab \]
が成り立つことを示せ.
(ii) 科目$\mathrm{X}$の得点と科目$\mathrm{Y}$の得点の相関係数$r_{\mathrm{XY}}$を$x$で表せ.
(iii) $x$の値を$2$増やして$r_{\mathrm{XY}}$を計算しても値は同じであった.このとき,$r_{\mathrm{XY}}$の値を四捨五入して小数第$1$位まで求めよ.