タグ「分け」の検索結果

1ページ目:全5問中1問~10問を表示)
広島大学 国立 広島大学 2015年 第5問
$m,\ n$を自然数とする.次の問いに答えよ.

(1)$m \geqq 2$,$n \geqq 2$とする.異なる$m$種類の文字から重複を許して$n$個を選び,$1$列に並べる.このとき,ちょうど$2$種類の文字を含む文字列は何通りあるか求めよ.
(2)$n \geqq 3$とする.$3$種類の文字$a,\ b,\ c$から重複を許して$n$個を選び,$1$列に並べる.このとき$a,\ b,\ c$すべての文字を含む文字列は何通りあるか求めよ.
(3)$n \geqq 3$とする.$n$人を最大$3$組までグループ分けする.このときできたグループ数が$2$である確率$p_n$を求めよ.ただし,どのグループ分けも同様に確からしいとする.
たとえば,$n=3$のとき,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人をグループ分けする方法は
$\{(\mathrm{A},\ \mathrm{B},\ \mathrm{C})\},\quad \{(\mathrm{A},\ \mathrm{B}),\ (\mathrm{C})\},\quad \{(\mathrm{A},\ \mathrm{C}),\ (\mathrm{B})\}$
$\{(\mathrm{B},\ \mathrm{C}),\ (\mathrm{A})\},\quad \{(\mathrm{A}),\ (\mathrm{B}),\ (\mathrm{C})\}$
の$5$通りであるので,$\displaystyle p_3=\frac{3}{5}$である.
(4)$(3)$の確率$p_n$が$\displaystyle \frac{1}{3}$以下となるような$n$の範囲を求めよ.
神奈川大学 私立 神奈川大学 2015年 第1問
次の空欄$(\mathrm{a})$~$(\mathrm{g})$を適当に補え.

(1)不等式$|3x-5|<2x+1$を満たす$x$の値の範囲は$[$(\mathrm{a])$}$である.
(2)$t>0$とする.$2$つのベクトル$\overrightarrow{a}=(t+3,\ t-1)$と$\overrightarrow{b}=(-1,\ t)$が垂直であるとき,$t=[$(\mathrm{b])$}$である.
(3)白い玉が$3$個,赤い玉が$2$個入っている袋がある.袋から玉を$1$つ取り出し色を確かめ袋に戻す操作を$3$回行う.このとき,$2$回以上白い玉が出る確率は$[$(\mathrm{c])$}$である.

(4)$\displaystyle \lim_{h \to 0} \frac{e^{2h+2}-e^2}{h}=[$(\mathrm{d])$}$である.

(5)$8$つの数の集まり$\{-2,\ -1,\ 0,\ 1,\ 2,\ 3,\ 4,\ 5\}$を$2$組に分け,それぞれの組に属する数の和を考える.たとえば,
$\{-1,\ 0,\ 2,\ 4,\ 5\} \text{と} \{-2,\ 1,\ 3\}$
という組み分けについては,$10$と$2$である.このとき,
「どんな組み分けについても,少なくとも一方の和は$a$以上である」
という主張が成立するような数$a$のうち最大のものは$[$(\mathrm{e])$}$である.

(6)$\displaystyle \int_1^x \log t \, dt=[$(\mathrm{f])$}$であるので,$\displaystyle f(x)=\int_1^x (x-1) \log t \, dt$のとき,$f^\prime(x)=[$(\mathrm{g])$}$である.
津田塾大学 私立 津田塾大学 2012年 第3問
数列$\{a_n\}$の一般項を$\displaystyle a_n=\cos \frac{n \pi}{3}$とする.この数列の項を$(a_1)$,$(a_2,\ a_3)$,$(a_4,\ a_5,\ a_6)$,$\cdots$のように第$k$グループに$k$個の項が入るようにグループ分けする.第$25$グループに含まれる項の和を求めよ.
立教大学 私立 立教大学 2011年 第1問
下記の空欄イ~ホにあてはまる数を記入せよ.

(1)方程式$3\cos^3 \theta-5 \cos^2 \theta-4 \cos \theta+4=0$,および不等式$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$をみたす$\theta$に対して,$\cos \theta=[イ]$である.
(2)公差$\displaystyle \frac{1}{5}$,初項$-8$の等差数列$a_1,\ a_2,\ \cdots$を
\[ a_1 \;|\; a_2,\ a_3 \;|\; a_4,\ a_5,\ a_6 \;|\; a_7,\ a_8,\ a_9,\ a_{10} \;|\; \cdots \]
とグループ分けする.第$101$番目のグループに属する数の和は$[ロ]$である.
(3)空間に$3$点$\mathrm{A}(2,\ 2,\ 2)$,$\mathrm{B}(1,\ 2,\ 1)$,$\mathrm{C}(2,\ y,\ 1)$が与えられている.三角形$\mathrm{ABC}$が直角三角形になるのは$y=[ハ]$のときである.

(4)極限$\displaystyle \lim_{x \to 0} \frac{\sin (1-\cos x)}{x^2}$の値は$[ニ]$である.

(5)$1$個のさいころを$4$回続けて投げるとき,$3$回以上連続して同じ目が出る確率は$[ホ]$である.
早稲田大学 私立 早稲田大学 2010年 第3問
次の問いに答えよ.

(1)$8$名のクラスのうち,$3$名が男子学生,$5$名が女子学生とする.グループ研究を課すことになり,クラスを$3$つのグループに分けるとする.ただし,それぞれのグループの人数は$2$人以上,$4$人以下とする.

(i) 学生の性別に関係なくグループ分けをする方法は
\[ [ハ][ヒ][$0$] \text{通り} \]
ある.
(ii) 男子学生のみ,あるいは女子学生のみで構成されるグループを含まないグループ分けの方法は
\[ [フ][ヘ][$0$] \text{通り} \]
ある.

(2)$7$つの異なる映画を$4$回上映する場合を考える.ただし,$1$回の上映に$1$つの映画を上映し,上映する順番は区別しないこととする.

(i) 同じ映画が複数回上映されない場合,上映する場合の数は
\[ [ホ][$5$] \text{通り} \]
ある.
(ii) 同じ映画を複数回上映してもよい場合,上映する場合の数は
\[ [マ][ミ][$0$] \text{通り} \]
ある.
スポンサーリンク

「分け」とは・・・

 まだこのタグの説明は執筆されていません。