タグ「出発」の検索結果

4ページ目:全94問中31問~40問を表示)
北海道大学 国立 北海道大学 2014年 第4問
図のような格子状の道路がある.$\mathrm{S}$地点を出発して,東または北に進んで$\mathrm{G}$地点に到達する経路を考える.ただし太い実線で描かれた区間$a$を通り抜けるのに$1$分,点線で描かれた区間$b$を通り抜けるのに$8$分,それ以外の各区間を通り抜けるのに$2$分かかるものとする.たとえば,図の矢印に沿った経路では$S$を出発し$\mathrm{G}$に到達するまでに$16$分かかる.
(図は省略)

(1)$a$を通り抜ける経路は何通りあるか.
(2)$a$を通り抜けずに$b$を通り抜ける経路は何通りあるか.
(3)すべての経路から任意に$1$つ選んだとき,$\mathrm{S}$地点から$\mathrm{G}$地点に到達するのにかかる時間の期待値を求めよ.
千葉大学 国立 千葉大学 2014年 第1問
下図のような$1$辺の長さ$10 \, \mathrm{cm}$の正方形$\mathrm{ABCD}$がある.点$\mathrm{P}$および点$\mathrm{Q}$は時刻$0$に$\mathrm{A}$および$\mathrm{B}$をそれぞれ出発し,正方形$\mathrm{ABCD}$の周上を反時計回りに毎秒$1 \, \mathrm{cm}$進む.また,点$\mathrm{R}$は時刻$0$に$\mathrm{B}$を出発し,正方形$\mathrm{ABCD}$の周上を反時計回りに毎秒$2 \, \mathrm{cm}$進む.点$\mathrm{R}$が$\mathrm{A}$に達するまでに$\triangle \mathrm{PQR}$の面積が$35 \, \mathrm{cm}^2$となる時刻をすべて求めよ.

\begin{zahyou*}%
[ul=10mm,Ueyohaku=1em,
Hidariyohaku=1em,%
Sitayohaku=1em]%
(0,3)(0,3)
\tenretu{A(0,3)nw;B(0,0)sw;%
C(3,0)se;D(3,3)ne}
\Takakkei{\A\B\C\D}
\end{zahyou*}
北海道大学 国立 北海道大学 2014年 第4問
図のような格子状の道路がある.$\mathrm{S}$地点を出発して,東または北に進んで$\mathrm{G}$地点に到達する経路を考える.ただし太い実線で描かれた区間$a$を通り抜けるのに$1$分,点線で描かれた区間$b$を通り抜けるのに$8$分,それ以外の各区間を通り抜けるのに$2$分かかるものとする.たとえば,図の矢印に沿った経路では$S$を出発し$\mathrm{G}$に到達するまでに$16$分かかる.
(図は省略)

(1)$a$を通り抜ける経路は何通りあるか.
(2)$a$を通り抜けずに$b$を通り抜ける経路は何通りあるか.
(3)すべての経路から任意に$1$つ選んだとき,$\mathrm{S}$地点から$\mathrm{G}$地点に到達するのにかかる時間の期待値を求めよ.
千葉大学 国立 千葉大学 2014年 第1問
下図のような$1$辺の長さ$10 \, \mathrm{cm}$の正方形$\mathrm{ABCD}$がある.点$\mathrm{P}$および点$\mathrm{Q}$は時刻$0$に$\mathrm{A}$および$\mathrm{B}$をそれぞれ出発し,正方形$\mathrm{ABCD}$の周上を反時計回りに毎秒$1 \, \mathrm{cm}$進む.また,点$\mathrm{R}$は時刻$0$に$\mathrm{B}$を出発し,正方形$\mathrm{ABCD}$の周上を反時計回りに毎秒$2 \, \mathrm{cm}$進む.点$\mathrm{R}$が$\mathrm{A}$に達するまでに$\triangle \mathrm{PQR}$の面積が$35 \, \mathrm{cm}^2$となる時刻をすべて求めよ.

\begin{zahyou*}%
[ul=10mm,Ueyohaku=1em,
Hidariyohaku=1em,%
Sitayohaku=1em]%
(0,3)(0,3)
\tenretu{A(0,3)nw;B(0,0)sw;%
C(3,0)se;D(3,3)ne}
\Takakkei{\A\B\C\D}
\end{zahyou*}
日本女子大学 私立 日本女子大学 2014年 第3問
座標平面上を動く点$\mathrm{P}$が原点$(0,\ 0)$を出発して,$1$枚の硬貨を投げて表が出たら$x$軸方向の正の向きに$1$だけ進み,裏が出たら$y$軸方向の正の向きに$1$だけ進むとき,次の問いに答えよ.

(1)硬貨を$4$回投げたとき,$\mathrm{P}$が点$(2,\ 2)$に到達する確率を求めよ.
(2)硬貨を$9$回投げたとき,$\mathrm{P}$が点$(5,\ 4)$に到達する確率を求めよ.
(3)硬貨を$9$回投げたとき,$\mathrm{P}$が点$(2,\ 2)$を通らずに,点$(5,\ 4)$に到達する確率を求めよ.
慶應義塾大学 私立 慶應義塾大学 2014年 第3問
正六角形$\mathrm{ABCDEF}$の頂点$\mathrm{D}$と正六角形の外部の点$\mathrm{G}$を線分で結んだ下のような図形がある.動点$\mathrm{P}$はこの図形の線分上を動き,点から点へ移動する.動点$\mathrm{P}$の隣接する点への移動には$1$秒間を要する.また,隣接する点が複数あるときは,等しい確率でどれか$1$つの点に移動するものとする.
(図は省略)

(1)動点$\mathrm{P}$が$\mathrm{A}$から出発して$4$秒後に$\mathrm{G}$にいる確率は$\displaystyle \frac{[$53$]}{[$54$][$55$]}$である.

(2)動点$\mathrm{P}$が$\mathrm{A}$から出発して$5$秒後に$\mathrm{D}$にいる確率は$\displaystyle \frac{[$56$][$57$]}{[$58$][$59$]}$である.

(3)動点$\mathrm{P}$が$\mathrm{A}$から出発して$\mathrm{D}$に到達した時点で移動を終了するとき,$2n+1$秒以内に移動を終了する確率は$\displaystyle \frac{{[$60$]}^n-{[$61$]}^n}{{[$62$]}^n}$である.ただし,$n$は自然数とする.
龍谷大学 私立 龍谷大学 2014年 第2問
座標平面上の定点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(2,\ 1)$,$\mathrm{C}(2,\ 2)$,$\mathrm{D}(3,\ 3)$と動点$\mathrm{P}$を考える.$\mathrm{P}$は原点$\mathrm{O}(0,\ 0)$から出発する.表の出る確率が$\displaystyle \frac{1}{3}$,裏の出る確率が$\displaystyle \frac{2}{3}$のコインを投げ,そのたびに,表が出れば$x$軸の正方向に$1$,裏が出れば$y$軸の正方向に$1$だけ進む.コインを$6$回投げるとき,次の問いに答えなさい.

(1)$\mathrm{P}$が$\mathrm{D}$に達する確率を求めなさい.
(2)$\mathrm{P}$が$\mathrm{A}$,$\mathrm{B}$の両方を通過して$\mathrm{D}$に達する確率を求めなさい.
(3)$\mathrm{P}$が$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の少なくとも$1$つを通過して$\mathrm{D}$に達する確率を求めなさい.
早稲田大学 私立 早稲田大学 2014年 第1問
下図のように,$1$辺の長さ$5$の正方形$\mathrm{ABCD}$が,$1$辺の長さ$1$の正方形からなる格子で区画されている.点$\mathrm{P}$は,$\mathrm{A}$から出発して次のルールに従って格子の上を動くものとする.$\mathrm{X}$と記したカードと,$\mathrm{Y}$と記したカード$5$枚ずつを,よくシャッフルして上から順にカードをめくる.$\mathrm{X}$と記したカードが出た場合は図の$\mathrm{X}$方向,$\mathrm{Y}$と記したカードが出た場合は図の$\mathrm{Y}$方向に$1$だけ動く.すべてのカードがめくり終わると,点$\mathrm{P}$は$\mathrm{C}$に到達していることになる.このとき,点$\mathrm{P}$の動いた経路と,線分$\mathrm{AB}$,線分$\mathrm{BC}$で囲まれる部分の面積を$S_1$,点$\mathrm{P}$の動いた経路と,線分$\mathrm{AD}$,線分$\mathrm{DC}$で囲まれる部分の面積を$S_2$とする.以下の問に答えよ.

(1)カードが$\mathrm{YXYXXYYYXX}$の順に出たとき
\[ S_1=[ア],\quad S_2=[イ] \]
である.
(2)$|S_1-S_2| \geqq 19$となる確率は$\displaystyle \frac{[ウ]}{[エ]}$である.
(図は省略)
早稲田大学 私立 早稲田大学 2014年 第1問
下図のように,$1$辺の長さ$5$の正方形$\mathrm{ABCD}$が,$1$辺の長さ$1$の正方形からなる格子で区画されている.点$\mathrm{P}$は,$\mathrm{A}$から出発して次のルールに従って格子の上を動くものとする.$\mathrm{X}$と記したカードと,$\mathrm{Y}$と記したカード$5$枚ずつを,よくシャッフルして上から順にカードをめくる.$\mathrm{X}$と記したカードが出た場合は図の$\mathrm{X}$方向,$\mathrm{Y}$と記したカードが出た場合は図の$\mathrm{Y}$方向に$1$だけ動く.すべてのカードがめくり終わると,点$\mathrm{P}$は$\mathrm{C}$に到達していることになる.このとき,点$\mathrm{P}$の動いた経路と,線分$\mathrm{AB}$,線分$\mathrm{BC}$で囲まれる部分の面積を$S_1$,点$\mathrm{P}$の動いた経路と,線分$\mathrm{AD}$,線分$\mathrm{DC}$で囲まれる部分の面積を$S_2$とする.以下の問に答えよ.

(1)カードが$\mathrm{YXYXXYYYXX}$の順に出たとき
\[ S_1=[ア],\quad S_2=[イ] \]
である.
(2)$|S_1-S_2| \geqq 19$となる確率は$\displaystyle \frac{[ウ]}{[エ]}$である.
(図は省略)
慶應義塾大学 私立 慶應義塾大学 2014年 第4問
$r>0$とする.座標平面上の原点以外の点に対し,$2$種類の移動$\mathrm{A}$,$\mathrm{B}$を以下のように定める.

移動$\mathrm{A} \ \cdots \ (r \cos \theta,\ r \sin \theta)$にある点が$\displaystyle \left( r \cos \left( \theta+\frac{\pi}{6} \right),\ r \sin \left( \theta+\frac{\pi}{6} \right) \right)$に動く.

移動$\mathrm{B} \ \cdots \ (r \cos \theta,\ r \sin \theta)$にある点が$((r+1) \cos \theta,\ (r+1) \sin \theta)$に動く.

(図は省略)
動点$\mathrm{K}$は点$(1,\ 0)$を出発し,上記$\mathrm{A}$,$\mathrm{B}$いずれかの移動をくり返しながら座標平面上を動くとする.

(1)動点$\mathrm{K}$が$\mathrm{B}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{B}$の順に$4$回の移動を行ったとき,到達する点の座標は$([$49$] \sqrt{[$50$]},\ [$51$])$である.
(2)動点$\mathrm{K}$が$7$回の移動で点$(0,\ 5)$に到達する経路は$[$52$][$53$]$通りあり,そのうち点$\displaystyle \left( \frac{3}{2},\ \frac{3 \sqrt{3}}{2} \right)$を{\bf 通らない}ものは$[$54$][$55$]$通りある.

以下,$p$を$0 \leqq p \leqq 1$を満たす定数とする.動点$\mathrm{K}$は各回の移動において,確率$p$で移動$\mathrm{A}$を,確率$1-p$で移動$\mathrm{B}$を行うものとする.

(3)動点$\mathrm{K}$が$5$回の移動で到達する点の座標が$(0,\ 3)$である確率$P$を,$p$を用いた式で表しなさい.
(4)動点$\mathrm{K}$が$3$回の移動で到達する点の$y$座標を$a$とするとき,$a^2$の期待値$E$を$p$を用いた式で表しなさい.
スポンサーリンク

「出発」とは・・・

 まだこのタグの説明は執筆されていません。