タグ「出発」の検索結果

3ページ目:全94問中21問~30問を表示)
上智大学 私立 上智大学 2015年 第4問
$xyz$空間において,$xy$平面上に$4$点
\[ \mathrm{A}_1(1,\ 0,\ 0),\quad \mathrm{B}_1(0,\ 1,\ 0),\quad \mathrm{C}_1(-1,\ 0,\ 0),\quad \mathrm{D}_1(0,\ -1,\ 0) \]
を頂点とする正方形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$がある.$0<\theta<\pi$とし,この正方形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$を$xy$平面上で原点を中心に角$\theta$だけ回転させた後で$z$軸の正の方向に$2$だけ平行移動した正方形を$\mathrm{A}_2 \mathrm{B}_2 \mathrm{C}_2 \mathrm{D}_2$とする.

動点$\mathrm{P}_1$,$\mathrm{P}_2$が,それぞれ点$\mathrm{A}_1$,$\mathrm{A}_2$から同時に出発し,正方形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$,$\mathrm{A}_2 \mathrm{B}_2 \mathrm{C}_2 \mathrm{D}_2$の周上を,同じ速さで同じ向きに一周する.このとき,線分$\mathrm{P}_1 \mathrm{P}_2$が動いてできる曲面と正方形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$,$\mathrm{A}_2 \mathrm{B}_2 \mathrm{C}_2 \mathrm{D}_2$とで囲まれる立体を$V$とする.

(1)線分$\mathrm{P}_1 \mathrm{P}_2$の長さの最大値は$\sqrt{[ト]+[ナ] [き]}$であり,線分$\mathrm{P}_1 \mathrm{P}_2$の長さの最小値は$\sqrt{[ニ]+[ヌ] [く]}$である.
(2)$0<h<2$とするとき,平面$z=h$による立体$V$の断面は,一辺の長さが
\[ \sqrt{[ネ]+\left( [ノ]h^2+[ハ]h \right) \left( 1-[け] \right)} \]
の正方形であり,その一辺の長さは$h=[ヒ]$のとき最小である.

(3)立体$V$の体積は$\displaystyle \frac{[フ]}{[ヘ]}+\frac{[ホ]}{[マ]} [こ]$である.

(4)$\theta$が$\pi$に限りなく近づくとき,立体$V$の体積は$\displaystyle \frac{[ミ]}{[ム]}$に収束する.
\begin{screen}
$[き]$~$[こ]$の選択肢:

$\mathrm{(a)} \ \sin \theta \quad \mathrm{(b)} \ \cos \theta \quad \mathrm{(c)} \ \tan \theta \quad \mathrm{(d)} \ \sin^2 \theta \quad \mathrm{(e)} \ \cos \theta \sin \theta$
$\displaystyle \mathrm{(f)} \ \frac{1}{\sin \theta} \quad \mathrm{(g)} \ \frac{1}{\cos \theta} \quad \mathrm{(h)} \ \frac{1}{\tan \theta}$

\end{screen}
(図は省略)
東京理科大学 私立 東京理科大学 2015年 第1問
$[ ]$内に$0$から$9$までの数字を$1$つずつ入れよ.

(1)$a$を正の定数とし,関数
\[ f(x)=\tan 2x \ \left( 0 \leqq x<\frac{\pi}{4} \right) \text{および} g(x)=a \cos x\ \left( 0 \leqq x \leqq \frac{\pi}{2} \right) \]
に対して,曲線$y=f(x)$と$y=g(x)$の交点の$x$座標を$\theta$とする.曲線$y=f(x)$と$x$軸,および直線$x=\theta$で囲まれた部分の面積$S$を考える.

(i) $a=[ア]$のとき,$\displaystyle \theta=\frac{\pi}{6}$である.このとき$\displaystyle S=\frac{[イ]}{[ウ]} \times \log [エ]$である.
(ii) $a=\sqrt{[オ]}$のとき,$\displaystyle S=\frac{1}{2} \log \frac{\sqrt{7}+1}{2}$である.

ただし,正の数$A$に対して,$\log A$は$A$の自然対数を表す.
(2)$1$個のサイコロを投げ,その出た目によって,点$\mathrm{P}$を座標平面上で移動させる試行を繰り返す.
点$\mathrm{P}$の出発点$(x_0,\ y_0)$を原点$(0,\ 0)$とし,$1$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_1,\ y_1)$,$2$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_2,\ y_2)$,以下同様に$k$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_k,\ y_k)$とする.
座標$(x_k,\ y_k) (k=1,\ 2,\ 3,\ \cdots)$は次のルールによって定める.
サイコロを$k$回目に投げたとき,出た目を$3$で割った商を$q$,余りを$r$として,$x_k$を次のように$q$によって定め,
\[ \left\{ \begin{array}{ll}
q=0 & \text{のとき}x_k=x_{k-1} \\
q=1 & \text{のとき}x_k=x_{k-1}+1 \\
q=2 & \text{のとき}x_k=x_{k-1}-1
\end{array} \right. \]
$y_k$を次のように$r$によって定める.
\[ \left\{ \begin{array}{ll}
r=0 & \text{のとき}y_k=y_{k-1} \\
r=1 & \text{のとき}y_k=y_{k-1}+1 \\
r=2 & \text{のとき}y_k=y_{k-1}-1
\end{array} \right. \]
ただし,サイコロを投げたとき,$1$から$6$の目がそれぞれ確率$\displaystyle \frac{1}{6}$で出るものとする.

(i) $(x_2,\ y_2)=(0,\ 0)$である確率は$\displaystyle \frac{[ア]}{[イ]}$であり,$(x_3,\ y_3)=(0,\ 0)$である確率は$\displaystyle \frac{[ウ]}{[エオ]}$である.
(ii) $x_k+y_k$が偶数である確率を$p_k$とすると,$\displaystyle p_1=\frac{[カ]}{[キ]}$であり,
\[ p_k=\frac{[ク]}{[ケ]} \cdot \left( -\frac{[コ]}{[サ]} \right)^k+\frac{[シ]}{[ス]} \quad (k=2,\ 3,\ 4,\ \cdots) \]
である.

(3)$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$を$2:1$の比に内分する点を$\mathrm{P}$($\mathrm{OP}:\mathrm{PA}=2:1$),辺$\mathrm{OC}$を$1:2$の比に内分する点を$\mathrm{Q}$($\mathrm{OQ}:\mathrm{QC}=1:2$),辺$\mathrm{AB}$の中点を$\mathrm{M}$とする.


(i) $\displaystyle \mathrm{MP}=\frac{\sqrt{[ア]}}{[イ]}$,$\displaystyle \mathrm{MQ}=\frac{\sqrt{[ウエ]}}{[オ]}$である.

(ii) 三角形$\mathrm{MPQ}$の面積は$\displaystyle \frac{[カ]}{[キク]} \times \sqrt{[ケコ]}$である.

(iii) 辺$\mathrm{BC}$上の$\displaystyle \mathrm{BR}=\frac{[サ]}{[シ]}$となる点$\mathrm{R}$は,$3$点$\mathrm{M}$,$\mathrm{P}$,$\mathrm{Q}$で定まる平面上にある.
旭川大学 私立 旭川大学 2015年 第2問
\begin{mawarikomi}{32mm}{
(図は省略)
}
図のような$1$辺の長さ$6$の正方形$\mathrm{ABCD}$がある.点$\mathrm{P}$および点$\mathrm{Q}$は時刻$0$に$\mathrm{A}$および$\mathrm{B}$をそれぞれ出発し,正方形$\mathrm{ABCD}$の周上を反時計回りに毎秒$1$ずつ進む.また点$\mathrm{R}$は時刻$0$に$\mathrm{B}$を出発し,正方形$\mathrm{ABCD}$の周上を反時計回りに毎秒$3$ずつ進む.点$\mathrm{R}$が$\mathrm{A}$に達するまでに$\triangle \mathrm{PQR}$の面積が$11$になる時刻をすべて求めよ.
\end{mawarikomi}
名古屋市立大学 公立 名古屋市立大学 2015年 第4問
図$1$~$3$のような網目状の道があり,頂点$\mathrm{O}$を出発点とし,各頂点においてそれぞれ$\displaystyle \frac{1}{2}$の確率で上,または右斜め下に進む.ただし,右斜め下に道がない場合は必ず上に,上に道がない場合は必ず右斜め下に進み,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$のいずれかに到達したら停止する.次の問いに答えよ.
(図は省略)

(1)図$1$において,各頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に到達する確率$P_{\mathrm{A}},\ P_{\mathrm{B}},\ P_{\mathrm{C}}$を求めよ.
(2)図$2$において,$\mathrm{C}_1,\ \mathrm{C}_2$をともに通過して$\mathrm{C}$に到達する確率を求めよ.
(3) 図$2$において,$\mathrm{B}_1,\ \mathrm{B}_2$をともに通過して$\mathrm{B}$に到達する確率を求めよ.
名古屋市立大学 公立 名古屋市立大学 2015年 第3問
図$1$~$3$のような網目状の道があり,頂点$\mathrm{O}$を出発点とし,各頂点においてそれぞれ$\displaystyle \frac{1}{2}$の確率で上,または右斜め下に進む.ただし,右斜め下に道がない場合は必ず上に,上に道がない場合は必ず右斜め下に進み,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$のいずれかに到達したら停止する.次の問いに答えよ.
(図は省略)

(1)図$1$において,各頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に到達する確率$P_{\mathrm{A}},\ P_{\mathrm{B}},\ P_{\mathrm{C}}$を求めよ.
(2)図$2$において,$\mathrm{C}_1,\ \mathrm{C}_2$をともに通過して$\mathrm{C}$に到達する確率を求めよ.
(3) 図$2$において,$\mathrm{B}_1,\ \mathrm{B}_2$をともに通過して$\mathrm{B}$に到達する確率を求めよ.
名古屋市立大学 公立 名古屋市立大学 2015年 第3問
図$1$~$3$のような網目状の道があり,頂点$\mathrm{O}$を出発点とし,各頂点においてそれぞれ$\displaystyle \frac{1}{2}$の確率で上,または右斜め下に進む.ただし,右斜め下に道がない場合は必ず上に,上に道がない場合は必ず右斜め下に進み,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$のいずれかに到達したら停止する.次の問いに答えよ.
(図は省略)

(1)図$1$において,各頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に到達する確率$P_{\mathrm{A}},\ P_{\mathrm{B}},\ P_{\mathrm{C}}$を求めよ.
(2)図$3$において,$\mathrm{C}_1,\ \mathrm{C}_2$をともに通過して$\mathrm{C}$に到達する確率を求めよ.
(3)図$3$において,$\mathrm{B}$に到達する確率を求めよ.
千葉大学 国立 千葉大学 2014年 第1問
下図のような$1$辺の長さ$10 \, \mathrm{cm}$の正方形$\mathrm{ABCD}$がある.点$\mathrm{P}$および点$\mathrm{Q}$は時刻$0$に$\mathrm{A}$および$\mathrm{B}$をそれぞれ出発し,正方形$\mathrm{ABCD}$の周上を反時計回りに毎秒$1 \, \mathrm{cm}$進む.また,点$\mathrm{R}$は時刻$0$に$\mathrm{B}$を出発し,正方形$\mathrm{ABCD}$の周上を反時計回りに毎秒$2 \, \mathrm{cm}$進む.点$\mathrm{R}$が$\mathrm{A}$に達するまでに$\triangle \mathrm{PQR}$の面積が$35 \, \mathrm{cm}^2$となる時刻をすべて求めよ.

\begin{zahyou*}%
[ul=10mm,Ueyohaku=1em,
Hidariyohaku=1em,%
Sitayohaku=1em]%
(0,3)(0,3)
\tenretu{A(0,3)nw;B(0,0)sw;%
C(3,0)se;D(3,3)ne}
\Takakkei{\A\B\C\D}
\end{zahyou*}
群馬大学 国立 群馬大学 2014年 第3問
座標平面において,動点$\mathrm{P}(x,\ y)$は単位円$C$上の点$\mathrm{Q}(1,\ 0)$を出発し,$C$上を反時計回りに$1$周する.弧$\mathrm{PQ}$の長さは,出発してからの時間に比例する.$\mathrm{P}$が$1$周するのに$T$秒かかる.このとき,以下の問いに答えよ.

(1)出発してから$t$秒後($0 \leqq t \leqq T$)の点$\mathrm{P}(x,\ y)$について$x,\ y$を$t$と$T$を用いて表せ.
(2)出発してから$t$秒後($\displaystyle 0 \leqq t \leqq \frac{T}{4}$)の点$\mathrm{P}(x,\ y)$に対して$z=2x^2+xy+y^2$を考える.$z$の最大値と最小値を求めよ.また最大値,最小値をとるのは出発してから何秒後か$T$を用いて表せ.
群馬大学 国立 群馬大学 2014年 第3問
座標平面において,動点$\mathrm{P}(x,\ y)$は単位円$C$上の点$\mathrm{Q}(1,\ 0)$を出発し,$C$上を反時計回りに$1$周する.弧$\mathrm{PQ}$の長さは,出発してからの時間に比例する.$\mathrm{P}$が$1$周するのに$T$秒かかる.このとき,以下の問いに答えよ.

(1)出発してから$t$秒後($0 \leqq t \leqq T$)の点$\mathrm{P}(x,\ y)$について$x,\ y$を$t$と$T$を用いて表せ.
(2)出発してから$t$秒後($\displaystyle 0 \leqq t \leqq \frac{T}{4}$)の点$\mathrm{P}(x,\ y)$に対して$z=2x^2+xy+y^2$を考える.$z$の最大値と最小値を求めよ.また最大値,最小値をとるのは出発してから何秒後か$T$を用いて表せ.
群馬大学 国立 群馬大学 2014年 第2問
座標平面において,動点$\mathrm{P}(x,\ y)$は単位円$C$上の点$\mathrm{Q}(1,\ 0)$を出発し,$C$上を反時計回りに$1$周する.弧$\mathrm{PQ}$の長さは,出発してからの時間に比例する.$\mathrm{P}$が$1$周するのに$T$秒かかる.このとき,以下の問いに答えよ.

(1)出発してから$t$秒後($0 \leqq t \leqq T$)の点$\mathrm{P}(x,\ y)$について$x,\ y$を$t$と$T$を用いて表せ.
(2)出発してから$t$秒後($\displaystyle 0 \leqq t \leqq \frac{T}{4}$)の点$\mathrm{P}(x,\ y)$に対して$z=2x^2+xy+y^2$を考える.$z$の最大値と最小値を求めよ.また最大値,最小値をとるのは出発してから何秒後か$T$を用いて表せ.
スポンサーリンク

「出発」とは・・・

 まだこのタグの説明は執筆されていません。