タグ「出発」の検索結果

2ページ目:全94問中11問~20問を表示)
島根大学 国立 島根大学 2015年 第1問
下図のように,南北に$7$本,東西に$6$本の道がある.ただし,$\mathrm{C}$地点は通れないものとする.このとき,次の問いに答えよ.
(図は省略)

(1)$\mathrm{O}$地点を出発し,$\mathrm{A}$地点を通り,$\mathrm{P}$地点へ最短距離で行く道順は何通りあるか.
(2)$\mathrm{O}$地点を出発し,$\mathrm{B}$地点を通り,$\mathrm{P}$地点へ最短距離で行く道順は何通りあるか.
(3)$\mathrm{O}$地点を出発し,$\mathrm{A}$地点と$\mathrm{B}$地点の両方を通り,$\mathrm{P}$地点へ最短距離で行く道順は何通りあるか.なお,同じ道を何度通ってもよいとする.
島根大学 国立 島根大学 2015年 第1問
下図のように,南北に$7$本,東西に$6$本の道がある.ただし,$\mathrm{C}$地点は通れないものとする.このとき,次の問いに答えよ.
(図は省略)

(1)$\mathrm{O}$地点を出発し,$\mathrm{A}$地点を通り,$\mathrm{P}$地点へ最短距離で行く道順は何通りあるか.
(2)$\mathrm{O}$地点を出発し,$\mathrm{B}$地点を通り,$\mathrm{P}$地点へ最短距離で行く道順は何通りあるか.
(3)$\mathrm{O}$地点を出発し,$\mathrm{A}$地点と$\mathrm{B}$地点の両方を通り,$\mathrm{P}$地点へ最短距離で行く道順は何通りあるか.なお,同じ道を何度通ってもよいとする.
佐賀大学 国立 佐賀大学 2015年 第3問
正方形の$4$個の頂点を,時計回りに順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.頂点$\mathrm{A}$から出発して頂点上を時計回りに点$\mathrm{P}$を進めるゲームを行う.硬貨を$1$回投げるごとに,表が出たときには頂点$1$つ分だけ点$\mathrm{P}$を進め,裏が出たときには頂点$2$つ分だけ点$\mathrm{P}$を進めるものとする.ただし,点$\mathrm{P}$が頂点$\mathrm{D}$にとまった時点でゲームは終わるものとする.

硬貨を$n$回投げ終えた時点で点$\mathrm{P}$が頂点$\mathrm{A}$に到達する確率を$p_n$とするとき,次の問に答えよ.

(1)$p_2,\ p_3$を求めよ.
(2)$p_4,\ p_5$を求めよ.
(3)$p_{12}$を求めよ.
佐賀大学 国立 佐賀大学 2015年 第4問
正方形の$4$個の頂点を,時計回りに順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.頂点$\mathrm{A}$から出発して頂点上を時計回りに点$\mathrm{P}$を進めるゲームを行う.硬貨を$1$回投げるごとに,表が出たときには頂点$1$つ分だけ点$\mathrm{P}$を進め,裏が出たときには頂点$2$つ分だけ点$\mathrm{P}$を進めるものとする.ただし,点$\mathrm{P}$が頂点$\mathrm{D}$にとまった時点でゲームは終わるものとする.

硬貨を$n$回投げ終えた時点で点$\mathrm{P}$が頂点$\mathrm{A}$に到達する確率を$p_n$とするとき,次の問に答えよ.

(1)$p_2,\ p_3$を求めよ.
(2)$p_4,\ p_5$を求めよ.
(3)$p_{12}$を求めよ.
佐賀大学 国立 佐賀大学 2015年 第4問
正方形の$4$個の頂点を,時計回りに順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.頂点$\mathrm{A}$から出発して頂点上を時計回りに点$\mathrm{P}$を進めるゲームを行う.硬貨を$1$回投げるごとに,表が出たときには頂点$1$つ分だけ点$\mathrm{P}$を進め,裏が出たときには頂点$2$つ分だけ点$\mathrm{P}$を進めるものとする.ただし,点$\mathrm{P}$が頂点$\mathrm{D}$にとまった時点でゲームは終わるものとする.

硬貨を$n$回投げ終えた時点で点$\mathrm{P}$が頂点$\mathrm{A}$に到達する確率を$p_n$とするとき,次の問に答えよ.

(1)$p_2,\ p_3$を求めよ.
(2)$p_4,\ p_5$を求めよ.
(3)$p_{12}$を求めよ.
千葉大学 国立 千葉大学 2015年 第4問
平面上に$2$つの円
\[ C_1:x^2+y^2=1,\quad C_2:\left( x+\frac{3}{2} \right)^2+y^2=\frac{1}{4} \]
があり,点$(-1,\ 0)$で接している.

点$\mathrm{P}_1$は$C_1$上を反時計周りに一定の速さで動き,点$\mathrm{P}_2$は$C_2$上を反時計周りに一定の速さで動く.二点$\mathrm{P}_1$,$\mathrm{P}_2$はそれぞれ点$(1,\ 0)$および点$(-1,\ 0)$を時刻$0$に同時に出発する.$\mathrm{P}_1$は$C_1$を一周して時刻$2 \pi$に点$(1,\ 0)$に戻り,$\mathrm{P}_2$は$C_2$を二周して時刻$2 \pi$に点$(-1,\ 0)$に戻るものとする.$\mathrm{P}_1$と$\mathrm{P}_2$の中点を$\mathrm{M}$とおく.
$\mathrm{P}_1$が$C_1$を一周するときの点$\mathrm{M}$の軌跡の概形を図示して,その軌跡によって囲まれる図形の面積を求めよ.
千葉大学 国立 千葉大学 2015年 第6問
平面上に$2$つの円
\[ C_1:x^2+y^2=1,\quad C_2:\left( x+\frac{3}{2} \right)^2+y^2=\frac{1}{4} \]
があり,点$(-1,\ 0)$で接している.

点$\mathrm{P}_1$は$C_1$上を反時計周りに一定の速さで動き,点$\mathrm{P}_2$は$C_2$上を反時計周りに一定の速さで動く.二点$\mathrm{P}_1$,$\mathrm{P}_2$はそれぞれ点$(1,\ 0)$および点$(-1,\ 0)$を時刻$0$に同時に出発する.$\mathrm{P}_1$は$C_1$を一周して時刻$2 \pi$に点$(1,\ 0)$に戻り,$\mathrm{P}_2$は$C_2$を二周して時刻$2 \pi$に点$(-1,\ 0)$に戻るものとする.$\mathrm{P}_1$と$\mathrm{P}_2$の中点を$\mathrm{M}$とおく.
$\mathrm{P}_1$が$C_1$を一周するときの点$\mathrm{M}$の軌跡の概形を図示して,その軌跡によって囲まれる図形の面積を求めよ.
日本女子大学 私立 日本女子大学 2015年 第4問
$1$辺の長さが$1$の正六角形の頂点の$1$つを$\mathrm{A}$とする.頂点$\mathrm{A}$を出発し,正六角形の辺上を時計回りに動く点$\mathrm{P}$がある.$1$個のさいころを投げて,$1$または$6$の目が出たときには点$\mathrm{P}$は$2$だけ進み,他の目が出たときには点$\mathrm{P}$は$1$だけ進む.さいころを繰り返し投げ,点$\mathrm{P}$が頂点$\mathrm{A}$にもどるか,頂点$\mathrm{A}$を通り越したら,さいころ投げは終了する.さいころ投げが終了したとき,点$\mathrm{P}$が頂点$\mathrm{A}$にある確率を求めよ.
立教大学 私立 立教大学 2015年 第3問
座標平面上の$2$点$\mathrm{P}$,$\mathrm{Q}$を$\mathrm{P}(-1,\ 2)$,$\mathrm{Q}(1,\ 2)$とする.点$\mathrm{A}$が点$(1,\ 0)$から出発し,点$\mathrm{O}(0,\ 0)$を中心とする半径$1$の円周$C$上を次のルールで動くとする.

【ルール】
\begin{itemize}
$1$個のさいころを$1$回投げて$1$回の試行とする.
$a$の目が出たら,反時計回りに$a \times {30}^\circ$回転する.
\end{itemize}

このとき,次の問に答えよ.

(1)三角形$\mathrm{PQA}$の面積が$\displaystyle \frac{3}{2}$となるような$\mathrm{A}$の座標をすべて求めよ.
(2)三角形$\mathrm{PQA}$が直角三角形となるような$\mathrm{A}$の座標をすべて求めよ.
(3)$2$回の試行を行う.$2$回の試行の後,三角形$\mathrm{PQA}$が直角三角形となる確率を求めよ.
(4)$3$回の試行を行う.$3$回の試行の後,三角形$\mathrm{PQA}$の面積が$\displaystyle \frac{3}{2}$となる確率を求めよ.
中央大学 私立 中央大学 2015年 第4問
表が出る確率が$\displaystyle q \ \left( q<\frac{1}{2} \right)$,裏が出る確率が$1-q$であるコインを使い,$xy$平面上の動点$P$を次の規則で動かす.
\begin{itemize}
動点$P$は原点から出発する.
コインを投げて表が出ると,$x$軸の正の方向に$1$移動する.
コインを投げて裏が出ると,$y$軸の正の方向に$1$移動する.
\end{itemize}
このコインを$4$回投げたとき,動点$P$が点$\mathrm{A}(2,\ 2)$に到着する確率は$\displaystyle \frac{8}{27}$である.このとき,以下の設問に答えよ.なお,解答の数値は分数および累乗のままでよい.

(1)このコインを$1$回投げたとき,表が出る確率$q$を求めよ.
(2)このコインを$8$回投げたとき,
動点$P$が,途中で点$\mathrm{A}(2,\ 2)$を通らずに,点$\mathrm{B}(4,\ 4)$に到着する確率
を求めよ.
スポンサーリンク

「出発」とは・・・

 まだこのタグの説明は執筆されていません。