タグ「出現」の検索結果

1ページ目:全3問中1問~10問を表示)
横浜市立大学 公立 横浜市立大学 2016年 第2問
三角形があり,その頂点を反時計回りの順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とおく.表と裏の出現確率が等しいコインを投げ,表が出たら時計回りに隣り合う次の頂点へ,裏が出たら反時計回りに隣り合う次の頂点へ移動する試行を繰り返し行う.たとえば,頂点$\mathrm{A}$にいてコインの裏が出たならば,頂点$\mathrm{B}$へ移動することになる.

頂点$\mathrm{A}$から移動を開始するとき,$n$回の試行の後に頂点$\mathrm{A}$にいる確率を$P_n(\mathrm{A})$とする.このとき,以下の各問に答えよ.ただし,$n$は$n \geqq 1$である整数とする.

(1)$P_1(\mathrm{A})$を求めよ.
(2)$P_4(\mathrm{A})$を求めよ.
(3)$n \geqq 2$のとき$P_n(\mathrm{A})$を$P_{n-1}(\mathrm{A})$の式で表せ.
(4)$n \geqq 2$のとき$P_n(\mathrm{A})-P_{n-1}(\mathrm{A})$を$n$の式で表せ.
(5)$P_n(\mathrm{A})$を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
$n$を自然数とする.表と裏が$\displaystyle\frac{1}{2}$の確率で出現するコインを$n$回繰り返し投げる試行をおこなう.各試行に対して$n$個の数$X_1,\ \cdots,\ X_n$をつぎのように定義する.
\[ X_i=\left\{ \begin{array}{ll}
X_{i-1}+1 & (i \text{回目の結果が表の場合}) \\
X_{i-1}+2 & (i \text{回目の結果が裏の場合})
\end{array} \right. \]
ただし$X_0=0$とする.$X_1,\ X_2,\ \cdots,\ X_n$のいずれかが値$k (1 \leqq k \leqq 2n)$と等しくなる確率を$P(n,\ k)$と記す.例えば,$n=1$ならば$\displaystyle P(1,\ 1)=\frac{1}{2}$,$\displaystyle P(1,\ 2)=\frac{1}{2}$となる.$n=2$ならば$\displaystyle P(2,\ 1)=\frac{1}{2}$,$\displaystyle P(2,\ 4)=\frac{[$1$]}{[$2$]}$となる.

$3 \leqq k \leqq n$とする.$X_i=k$となるのは,$X_{i-1}=k-1$で$i$回目の結果が表となるか,あるいは$X_{i-1}=k-2$で$i$回目の結果が裏となるかのいずれかの場合である.したがって
\[ P(n,\ k)=\frac{[$3$]}{[$4$]}P(n,\ k-1)+\frac{[$5$]}{[$6$]}P(n,\ k-2) \quad (3 \leqq k \leqq n) \]
が成り立つ.
いまコインを$10$回投げる試行を考える.このとき
\[ P(10,\ 2)=\frac{[$7$]}{[$8$]},\quad P(10,\ 5)=\frac{[$9$][$10$]}{[$11$][$12$]} \]
である.
大阪教育大学 国立 大阪教育大学 2013年 第4問
ある種の粒子は出現して$1$時間後に次のように変化する.

確率$\displaystyle \frac{1}{3}$で$2$個の新しい粒子になる.

確率$\displaystyle \frac{1}{2}$で$1$個の新しい粒子になる.

確率$\displaystyle \frac{1}{6}$で消滅する.

$1$個の粒子から始まるものとして,次の問いに答えよ.

(1)$2$時間後に粒子が$2$個になっている確率を求めよ.
(2)$3$時間後に粒子が$5$個になっている確率を求めよ.
(3)$n$を自然数とする.$n$時間後に最大でいくつの粒子があるか.その個数と,そうなる確率を$n$を用いて表せ.
スポンサーリンク

「出現」とは・・・

 まだこのタグの説明は執筆されていません。