タグ「出て」の検索結果

1ページ目:全16問中1問~10問を表示)
鳥取大学 国立 鳥取大学 2016年 第2問
白玉が$6$個,赤玉が$5$個入った袋がある.以下の問いに答えよ.

(1)袋の中の玉がなくなるまで袋から玉を$1$個ずつ取り出すとき,最初に赤玉が連続して$4$個出て,かつ最後に赤玉が出る確率を求めよ.
(2)袋の中の玉がなくなるまで袋から玉を$1$個ずつ取り出すとき,白玉と赤玉が交互に出る確率を求めよ.
(3)袋から$5$個の玉を同時に取り出すとき,白玉$1$個につき$1000$円をもらい,赤玉$1$個につき$500$円を支払うものとする.このとき,もらった金額の合計額が支払った金額の合計額を上回る確率を求めよ.
東北医科薬科大学 私立 東北医科薬科大学 2016年 第1問
白玉$4$個と赤玉$2$個がはいっている袋から玉を$1$個取り出す試行を行う.このとき,次の問に答えなさい.

(1)取りだした球は袋に戻さないとして,この試行を$4$回繰り返す.$4$回目にはじめて赤玉が取り出される確率は$\displaystyle \frac{[ア]}{[イウ]}$である.
(2)取りだした球は袋に戻さないとして,この試行を$4$回繰り返す.このとき,赤玉がちょうど$2$個取り出される確率は$\displaystyle \frac{[エ]}{[オ]}$である.
(3)取りだした球は袋に戻さないとして,この試行を$4$回繰り返す.$4$回目に$2$個目の赤玉が取り出される確率は$\displaystyle \frac{[カ]}{[キ]}$である.
(4)取りだした球を袋に戻すとして,この試行を$4$回繰り返す.このとき,赤玉がちょうど$2$個取り出される確率は$\displaystyle \frac{[ク]}{[ケコ]}$である.
(5)取りだした球を袋に戻すとして,この試行を繰り返す.赤玉が取り出されたら試行は止める.$k$回目に赤玉が出て止める確率は$\displaystyle P_k=\frac{[サ]}{[シ]} \left( \frac{[ス]}{[セ]} \right)^{\mkakko{ソ}}$である.
また$\displaystyle S_k=(P_1)^2+(P_2)^2+\cdots +(P_k)^2=\frac{[タ]}{[チ]}-\frac{[ツ]}{[テ]} \left( \frac{[ト]}{[ナ]} \right)^{\mkakko{ニ}}$なので$S_k \geqq 0.19998$をみたす最小の$k$は$[ヌネ]$である.
ただし$\log_{10}2=0.3010,\ \log_{10}3=0.4771$とする.
埼玉大学 国立 埼玉大学 2015年 第4問
百の位が$X$で十の位が$Y$で一の位が$Z$である三けたの数を$(XYZ)$で表すことにする.サイコロを投げるとき,$1$から$6$までの$6$通りのうちいずれかの目が出て,どの目が出ることも同様に確からしいとする.このサイコロを$3$回投げ,出た目の数を順に$A,\ B,\ C$とする.このとき下記の設問に答えよ.

(1)$(ABC)$が$4$の倍数になる確率を求めよ.
(2)$(ABC)$,$(ACB)$,$(BAC)$,$(BCA)$,$(CAB)$,$(CBA)$のいずれもが$4$の倍数にならない確率を求めよ.
千葉大学 国立 千葉大学 2015年 第4問
さいころを$5$回振るとき,初めの$4$回においては$6$の目が偶数回出て,しかも最後の$2$回においては$6$の目がちょうど$1$回出る確率を求めよ.ただし,$6$の目が一度も出ない場合も$6$の目が出る回数を偶数回とみなす.
千葉大学 国立 千葉大学 2015年 第2問
さいころを$5$回振るとき,初めの$4$回においては$6$の目が偶数回出て,しかも最後の$2$回においては$6$の目がちょうど$1$回出る確率を求めよ.ただし,$6$の目が一度も出ない場合も$6$の目が出る回数を偶数回とみなす.
千葉大学 国立 千葉大学 2015年 第3問
さいころを$5$回振るとき,初めの$4$回においては$6$の目が偶数回出て,しかも最後の$2$回においては$6$の目がちょうど$1$回出る確率を求めよ.ただし,$6$の目が一度も出ない場合も$6$の目が出る回数を偶数回とみなす.
富山大学 国立 富山大学 2015年 第3問
「表が出る確率が$p (0<p<1)$,裏が出る確率が$1-p$のコインを投げ,数直線上の点$\mathrm{A}$を次の規則(ア),(イ)にしたがって動かす」という操作を繰り返し行う.ただし,点$\mathrm{A}$は最初は原点にあるものとする.

\mon[(ア)] 点$\mathrm{A}$が$-1,\ 0,\ 1,\ 2$のいずれかにあるときには,コインを投げて表が出れば点$\mathrm{A}$を$+2$だけ移動させ,裏が出れば点$\mathrm{A}$を$-1$だけ移動させる.
\mon[(イ)] 点$\mathrm{A}$が$-1,\ 0,\ 1,\ 2$以外にあるときには,コインを投げて表が出ても裏が出ても点$\mathrm{A}$を移動させない.

このような操作を$n$回行った後の点$\mathrm{A}$の座標を$x_n$とするとき,次の問いに答えよ.

(1)上の操作を$3$回繰り返した後,$x_1 \neq 0$かつ$x_2 \neq 0$かつ$x_3 \neq 0$となる確率を求めよ.
(2)$k$を自然数とする.$x_{3k}=0$となる確率,$x_{3k+1}=0$となる確率,$x_{3k+2}=0$となる確率をそれぞれ求めよ.
(3)$k$を自然数とする.$x_{3k-2} \neq x_{3k-1}$かつ$x_{3k-1}=x_{3k}$となる確率を求めよ.
北九州市立大学 公立 北九州市立大学 2014年 第4問
コインを連続して投げる試行を考える.表が出た回は賞金が得られ,裏が出た回の賞金は$0$円とする.賞金は,$1$回目の試行で表なら$1$円,直前に裏が出て表が出たら$1$円である.裏が出た直後の試行または$1$回目の試行から数えて$n$回($n \geqq 2$)続けて表が出ると,この$n$回目の表に対して$n$円得られるとする.たとえば,$5$回投げて表,表,裏,表,表の順に出た場合に(表,表,裏,表,表)と表記する.この場合には$1+2+0+1+2$の合計$6$円の賞金が得られる.以下の問題に答えよ.

(1)$2$回コインを投げ,$2$回とも表が出る確率を求めよ.
(2)$2$回コインを投げたとき,得られる賞金の期待値を求めよ.
(3)$5$回コインを投げて$3$回表が出たとする.得られる賞金が最も多いときと最も少ないときの賞金の差を求めよ.
(4)$5$回コインを投げたとき,得られる賞金が$4$円である確率を求めよ.
(5)$5$回コインを投げたとき,得られる賞金が$3$円以下である確率を求めよ.
琉球大学 国立 琉球大学 2013年 第3問
$a$を自然数とする.赤球$3$個,白球$a$個が入った袋から一つずつ順に取り出す操作をすべての球を取り出すまで繰り返す.ただし,取り出した球は元に戻さない.このとき,$2$個目の赤球が出る前までに取り出した球の数を$X$とする.次の問いに答えよ.

(1)$a=4$とする.$3$番目までに赤球が$1$個だけ出て,$4$番目が赤球である確率を求めよ.
(2)$X=n$となる確率を$p_n$とする.$p_n$が最大となる$n$の値を$a$を用いて表せ.
(3)$X$の期待値を求めよ.
岐阜薬科大学 公立 岐阜薬科大学 2013年 第5問
$1$辺の長さが$1$の正六角形$\mathrm{ABCDEF}$の辺上を動く点$\mathrm{P}$がある.頂点$\mathrm{A}$を出発して,さいころを振るごとに,奇数の目が出たときは時計回りに$1$動き,偶数の目が出たときは反時計回りに$2$動くという試行を繰り返し,再び頂点$\mathrm{A}$に戻ったとき試行を終了する.

(1)$3$回の試行すべてにおいて偶数の目が出て,試行を終了する確率を求めよ.
(2)$3$回の試行後,点$\mathrm{P}$が頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$にいる確率をそれぞれ求めよ.
(3)$3k$回の試行後,試行を終了する確率を求めよ.ただし,$k$は正の整数とする.
スポンサーリンク

「出て」とは・・・

 まだこのタグの説明は執筆されていません。