タグ「凹凸」の検索結果

8ページ目:全91問中71問~80問を表示)
島根大学 国立 島根大学 2011年 第4問
次の問いに答えよ.

(1)関数$\displaystyle y=\frac{1}{\sqrt{x^2+1}}$の増減,極値,グラフの凹凸を調べ,そのグラフの概形をかけ.
(2)関数$y=\log (x+\sqrt{x^2+1})-ax$が極値をもつように,定数$a$の値の範囲を定めよ.
(3)極値$\displaystyle \lim_{n \to \infty} \left( \frac{1}{\sqrt{1^2+n^2}} +\frac{1}{\sqrt{2^2+n^2}}+\cdots+\frac{1}{\sqrt{n^2+n^2}}\right)$を求めよ.
鳥取大学 国立 鳥取大学 2011年 第4問
$x$の関数$f(x)$と$F(x)$を
\[ f(x)=\frac{1}{x^2+1},\quad F(x)=\int_0^x f(t) \, dt \]
により定める.このとき,次の問いに答えよ.

(1)関数$f(x)$の増減,凹凸を調べ,$y=f(x)$のグラフの概形を描け.
(2)$\displaystyle F \left( \frac{1}{\sqrt{3}} \right)$の値を求めよ.
(3)実数$x,\ y$が$|x|<1,\ |y|<1$を満たすとき
\[ F \left( \frac{x+y}{1-xy} \right) =F(x)+F(y) \]
が成り立つことを示せ.
(4)$F(2-\sqrt{3})$の値を求めよ.
山形大学 国立 山形大学 2011年 第1問
関数$f(x)=x+\cos (2x)$がある.

(1)$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)$f(x)$の第$2$次導関数$f^{\prime\prime}(x)$を求めよ.
(3)曲線$\displaystyle y=f(x) \ \left( \text{ただし,} \ 0 \leqq x \leqq \frac{\pi}{2} \right)$の増減表を書け.増減表には,増減のほか,凹凸についても明示すること.
(4)曲線$\displaystyle y=f(x) \ \left( \text{ただし,} \ 0 \leqq x \leqq \frac{\pi}{2} \right)$のグラフを描け.
愛媛大学 国立 愛媛大学 2011年 第4問
関数$f(x)=-x \log x-(1-x) \log (1-x) \ (0<x<1)$について次の問いに答えよ.ただし,必要ならば$\displaystyle \lim_{x \to +0}x \log x=0$を使ってよい.

(1)$y=f(x)$の増減,極値,グラフの凹凸,$\displaystyle \lim_{x \to +0}f(x),\ \lim_{x \to 1-0}f(x)$を調べ,そのグラフをかけ.
(2)定積分$\displaystyle S(p)=\int_p^{1-p}f(x) \, dx$を求めよ.ただし,$\displaystyle 0<p<\frac{1}{2}$とする.
(3)極限$\displaystyle \lim_{p \to +0}S(p)$を求めよ.
愛媛大学 国立 愛媛大学 2011年 第5問
関数$f(x)=-x \log x-(1-x) \log (1-x) \ (0<x<1)$について次の問いに答えよ.ただし,必要ならば$\displaystyle \lim_{x \to +0}x \log x=0$を使ってよい.

(1)$y=f(x)$の増減,極値,グラフの凹凸,$\displaystyle \lim_{x \to +0}f(x),\ \lim_{x \to 1-0}f(x)$を調べ,そのグラフをかけ.
(2)定積分$\displaystyle S(p)=\int_p^{1-p}f(x) \, dx$を求めよ.ただし,$\displaystyle 0<p<\frac{1}{2}$とする.
(3)極限$\displaystyle \lim_{p \to +0}S(p)$を求めよ.
早稲田大学 私立 早稲田大学 2011年 第3問
$f(x)=\displaystyle\frac{\log x}{x}$とする.以下の問に答えよ.

(1)$y=f(x)$のグラフの概形を次の点に注意して描け:$f(x)$の増減,グラフの凹凸,$x$→$+0$,$x$→$\infty$のときの$f(x)$の挙動.
(2)$n$を自然数とする.$k=1,\ 2,\ \cdots,\ n$に対して$x$が$\displaystyle e^{\frac{k-1}{n}} \leqq x \leqq e^{\frac{k}{n}}$を動くときの$f(x)$の最大値を$M_k$,最小値を$m_k$とし,
\[ A_n = \sum_{k=1}^n M_k(e^{\frac{k}{n}}- e^{\frac{k-1}{n}}) \]
\[ B_n = \sum_{k=1}^n m_k(e^{\frac{k}{n}}- e^{\frac{k-1}{n}}) \]
とおく.$A_n,\ B_n$を求めよ.
(3)$\displaystyle\lim_{n \to \infty} A_n$および$\displaystyle\lim_{n \to \infty} B_n$求めよ.
(4)各$n$に対して$\displaystyle B_n < \int_1^e f(x)\, dx < A_n$であることを示せ.
愛知工業大学 私立 愛知工業大学 2011年 第2問
$f(x)=x(1-\log x) (x>0)$とする.ただし,$\log x$は$x$の自然対数である.

(1)$xy$平面において,$y=f(x)$の増減,凹凸を調べ,グラフの概形をかけ.ただし,$\displaystyle \lim_{x \to +0}x \log x=0$である.
(2)$xy$平面において,曲線$y=f(x)$が$x$軸の正の部分と交わる点における曲線の接線を$\ell$とする.直線$\ell$,直線$x=1$および曲線$y=f(x)$で囲まれた部分の面積を求めよ.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2011年 第4問
関数$\displaystyle f(x)=2 \log \frac{2+\sqrt{4-x^2}}{x}-\sqrt{4-x^2}$を考える.ただし,対数は自然対数である.以下の問いに答えなさい.

(1)関数$f(x)$の定義域は$0<x \leqq a$である.$a$の値を求めなさい.
(2)曲線$y=f(x)$の概形をかきなさい.なお,$y$の増減およびグラフの凹凸を調べた過程も記載しなさい.
(3)$0<x_0<a$とし,上問$(2)$の曲線$y=f(x)$を$C$とする.$C$上の点$\mathrm{P}(x_0,\ y_0)$における$C$の接線と$y$軸との交点を$\mathrm{Q}$とする.線分$\mathrm{PQ}$の長さを求めなさい.ただし,$a$は上問$(1)$で求めた値とする.
高知工科大学 公立 高知工科大学 2011年 第4問
次の各問に答えよ.

(1)$x>0$のとき,不等式$\displaystyle e^x>1+x+\frac{x^2}{2}$が成り立つことを証明せよ.
(2)$\displaystyle \lim_{x \to \infty} xe^{-x}=0$を証明せよ.
(3)関数$y=xe^{-x}$の増減・凹凸を調べ,そのグラフを描け.
(4)$n$を自然数とする.$\displaystyle I_n=\int_0^n xe^{-x}\, dx$を計算し,$\displaystyle \lim_{n \to \infty}I_n$を求めよ.
広島市立大学 公立 広島市立大学 2011年 第4問
関数$f(x)=(x-2)e^{-\frac{x}{3}}$について,以下の問いに答えよ.

(1)$f(x)$の増減,極値,凹凸,変曲点を調べ,$y=f(x)$のグラフの概形を描け.必要であれば$\displaystyle \lim_{x \to \infty}xe^{-x}=0$を用いてよい.
(2)次の連立不等式の表す領域の面積を求めよ.
\[ x \geqq 0,\quad y \leqq 0,\quad y \geqq f(x) \]
スポンサーリンク

「凹凸」とは・・・

 まだこのタグの説明は執筆されていません。