タグ「円」の検索結果

91ページ目:全908問中901問~910問を表示)
滋賀県立大学 公立 滋賀県立大学 2010年 第2問
座標平面の原点$\mathrm{O}$を中心とする半径$r$の円を$C$とする.$C$上の$2$点$\mathrm{P}_1$,$\mathrm{P}_2$を原点に関して対称な位置にとる.また,点$\mathrm{Q}$を平面上の任意の点とし,$L={\mathrm{QP}_1}^2+{\mathrm{QP}_2}^2$とおく.

(1)$\mathrm{Q}$を固定したとき,$L$は$\mathrm{P}_1$,$\mathrm{P}_2$のとり方に依存せず一定であることを示せ.
(2)$\mathrm{Q}$が放物線$y=-x^2+5x-8$上を動くとき,$L$の最小値とそのときの$\mathrm{Q}$の座標を求めよ.
京都府立大学 公立 京都府立大学 2010年 第2問
定数$k$を実数とする.座標平面上に4つの定点A$(\overrightarrow{a})$,B$(\overrightarrow{b})$,C$(\overrightarrow{c})$,D$(\overrightarrow{d})$がある.$|\overrightarrow{a}|=2,\ |\overrightarrow{b}|=1,\ |\overrightarrow{a}-\overrightarrow{b}|=\sqrt{3}$とし,$\overrightarrow{d}=4\overrightarrow{b}$とする.このとき,Cを中心とする円$K$上の任意の点をP$(\overrightarrow{p})$とし,$K$はベクトル方程式
\[ (\overrightarrow{p}-k\overrightarrow{a}-\overrightarrow{b}) \cdot (\overrightarrow{p}+3\overrightarrow{b})=0 \]
で表されるとする.また,Dを通り,$\overrightarrow{a}$に平行な直線を$\ell$とする.以下の問いに答えよ.

(1)$\overrightarrow{c}$を$\overrightarrow{a},\ \overrightarrow{b},\ k$を用いて表せ.
(2)$K$の半径が$\sqrt{3}$となる$k$の値を求めよ.
(3)Cから$\ell$に下ろした垂線の足をHとする.Hの位置ベクトル$\overrightarrow{h}$を$\overrightarrow{a},\ \overrightarrow{b},\ k$を用いて表せ.
(4)$\ell$が,$K$と共有点をもつとするとき,$k$のとり得る値の範囲を求めよ.
京都府立大学 公立 京都府立大学 2010年 第2問
定数$k$を実数とする.座標平面上に4つの定点A$(\overrightarrow{a})$,B$(\overrightarrow{b})$,C$(\overrightarrow{c})$,D$(\overrightarrow{d})$がある.$|\overrightarrow{a}|=2,\ |\overrightarrow{b}|=1,\ |\overrightarrow{a}-\overrightarrow{b}|=\sqrt{3}$とし,$\overrightarrow{d}=4\overrightarrow{b}$とする.このとき,Cを中心とする円$K$上の任意の点をP$(\overrightarrow{p})$とし,$K$はベクトル方程式
\[ (\overrightarrow{p}-k\overrightarrow{a}-\overrightarrow{b}) \cdot (\overrightarrow{p}+3\overrightarrow{b})=0 \]
で表されるとする.また,Dを通り,$\overrightarrow{a}$に平行な直線を$\ell$とする.以下の問いに答えよ.

(1)$\overrightarrow{c}$を$\overrightarrow{a},\ \overrightarrow{b},\ k$を用いて表せ.
(2)$K$の半径が$\sqrt{3}$となる$k$の値を求めよ.
(3)Cから$\ell$に下ろした垂線の足をHとする.Hの位置ベクトル$\overrightarrow{h}$を$\overrightarrow{a},\ \overrightarrow{b},\ k$を用いて表せ.
(4)$\ell$が,$K$と共有点をもつとするとき,$k$のとり得る値の範囲を求めよ.
兵庫県立大学 公立 兵庫県立大学 2010年 第3問
$xy$平面において,原点$\mathrm{O}$を中心とする単位円とその \\
単位円周上の点$\mathrm{A}(-1,\ 0)$を考える.$y$軸上の点 \\
$\mathrm{P}(0,\ t)$に対して$\mathrm{A}$と$\mathrm{P}$を結ぶ直線がこの単位円と \\
$\mathrm{A}$以外で交わる点を$\mathrm{Q}$とし,$\mathrm{OQ}$が$x$軸の正の方向 \\
となす角を$\theta$とする.以下の問に答えなさい. \\
ただし,$-\pi<\theta<\pi$とする.
\img{562_2720_2010_2}{42}


(1)$t$を$\theta$で表しなさい.
(2)$\cos \theta$と$\sin \theta$をそれぞれ$t$で表しなさい.
(3)$\cos \theta$と$\sin \theta$の少なくとも一方が無理数であれば,$t$も無理数であることを示しなさい.
岐阜薬科大学 公立 岐阜薬科大学 2010年 第1問
次の条件によって定められる数列$\{p_n\},\ \{q_n\},\ \{r_n\}$がある.

$p_1=2,\ p_{n+1}=2p_n,$
$q_1=3,\ q_{n+1}=q_n+p_n,$
$r_1=4,\ r_{n+1}=2r_n-q_n+p_n \quad (n=1,\ 2,\ 3,\ \cdots)$

また,点$\mathrm{C}_n(p_n,\ q_n)$を中心とし,半径が$r_n$の円を$O_n$とするとき,次の問いに答えよ.

(1)数列$\{q_n\},\ \{r_n\}$の一般項をそれぞれ求めよ.
(2)円$O_n$は$x$軸と$2$点で交わることを示せ.
(3)円$O_n$と$x$軸との交点を$\mathrm{A}_n$,$\mathrm{B}_n$とするとき,$\displaystyle \lim_{n \to \infty} \cos \angle \mathrm{A}_n \mathrm{C}_n \mathrm{B}_n$の値を求めよ.
横浜市立大学 公立 横浜市立大学 2010年 第2問
座標平面上の原点$\mathrm{O}$を中心とする半径$2$の円を$C$とする.$\mathrm{O}$を始点とする半直線上の二点$\mathrm{P}$,$\mathrm{Q}$について$\mathrm{OP} \cdot \mathrm{OQ}=4$が成立するとき,$\mathrm{P}$と$\mathrm{Q}$は$C$に関して対称であるという(下の図では,$\mathrm{P}$は$C$の内側に取ってある).以下の問いに答えよ.
(図は省略)

(1)点$\mathrm{P}(x,\ y)$の$C$に関して対称な点$\mathrm{Q}$の座標を$x,\ y$を用いて表せ.
(2)点$\mathrm{P}(x,\ y)$が原点を除いた曲線
\[ (x-2)^2+(y-3)^2=13,\quad (x,\ y) \neq (0,\ 0) \]
上を動くとき,$\mathrm{Q}$の軌跡を求めよ.
釧路公立大学 公立 釧路公立大学 2010年 第1問
経済学において,企業とは自社の利益を最大にすることを目標に活動している組織であり,企業の利益は「売上総額$-$生産費用」で計算されると考えられている.

いま,ある企業が$1$日$x$台(ただし$x \geqq 0$とする)の太陽光パネルを生産している.その$1$台あたりの販売価格$p$万円および$x$台生産するための生産費用$c$万円は,生産台数$x$の関数で表され,それぞれ$p=-4x+a$,$c=x^2+b$である($a,\ b$は定数である).ただし,太陽光パネルの生産台数は工場の生産能力の限界により,$1$日$10$台までに制限されている.また,生産した太陽光パネルはその日のうちにすべて売却している.このとき,以下の各問に答えよ.

(1)この企業の$1$日あたりの利益$f(x)$を生産台数$x$の関数で表せ.
(2)$a=80$,$b=200$のとき,$1$日あたりの利益を最大にするための生産台数とそのときの利益を求めよ.
(3)$a=150$,$b=300$のとき,$1$日あたりの利益を最大にするための生産台数とそのときの利益を求めよ.
(4)$a=40$のとき,この企業がどのような生産台数を選んだとしても赤字にならない(選択可能なすべての$x$に対して,$f(x) \geqq 0$となる)$b$の範囲を求めよ.
釧路公立大学 公立 釧路公立大学 2010年 第3問
次の$2$つの円$C_1$と円$C_2$がある.このとき,以下の各問に答えよ.
\[ \left\{ \begin{array}{ll}
C_1: & x^2+y^2-9=0 \\
C_2: & x^2-2x+y^2-6y-7=0 \phantom{\frac{[ ]}{2}}
\end{array} \right. \]

(1)円$C_2$の中心の座標と半径を求めよ.
(2)円$C_1$と円$C_2$の$2$つの交点を通る直線の方程式を求めよ.
(3)$(2)$で求めた直線と円$C_2$の中心との距離を求めよ.
(4)円$C_1$と円$C_2$の$2$つの交点と点$(-2,\ -2)$を通る円の方程式を求めよ.
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。