タグ「円」の検索結果

83ページ目:全908問中821問~830問を表示)
香川大学 国立 香川大学 2010年 第1問
点Oを中心とし,半径1の円に内接する$\triangle$ABCが
\[ \overrightarrow{\mathrm{OA}}+\sqrt{3} \; \overrightarrow{\mathrm{OB}}+2 \; \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}} \]
をみたしている.このとき,次の問に答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}, \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}$を求めよ.
(2)$\angle \text{AOB},\ \angle \text{AOC}$を求めよ.
(3)$\triangle$ABCの面積を求めよ.
(4)辺BCの長さ,および頂点Aから対辺BCに引いた垂線の長さを求めよ.
香川大学 国立 香川大学 2010年 第1問
点Oを中心とし,半径1の円に内接する$\triangle$ABCが
\[ \overrightarrow{\mathrm{OA}}+\sqrt{3} \; \overrightarrow{\mathrm{OB}}+2 \; \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}} \]
をみたしている.このとき,次の問に答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}, \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}$を求めよ.
(2)$\angle \text{AOB},\ \angle \text{AOC}$を求めよ.
(3)$\triangle$ABCの面積を求めよ.
(4)辺BCの長さ,および頂点Aから対辺BCに引いた垂線の長さを求めよ.
奈良女子大学 国立 奈良女子大学 2010年 第6問
原点を中心とする半径2の円を$C$とする.$a$を実数とし,点$(a,\ 4)$から円$C$へ2本の接線を引き,その接点をP$_1$,P$_2$とする.P$_1$,P$_2$を通る直線が$a$の値にかかわらず定点を通ることを示せ.また,その定点の座標を求めよ.
宮崎大学 国立 宮崎大学 2010年 第1問
座標平面に原点O$(0,\ 0)$,点A$(-1,\ 3)$,点B$(4,\ 8)$がある.さらに,2次関数$y=f(x)$のグラフ$G$と円$C$はそれぞれ3点O,A,Bを通るものとする.このとき,次の各問に答えよ.

(1)$f(x)$を求めよ.
(2)円$C$の中心の座標および半径を求めよ.
(3)グラフ$G$と円$C$との交点のうち,3点O,A,B以外の点の座標を求めよ.
宮崎大学 国立 宮崎大学 2010年 第1問
座標平面に原点$\mathrm{O}(0,\ 0)$,点$\mathrm{A}(-1,\ 3)$,点$\mathrm{B}(4,\ 8)$がある.さらに,2次関数$y=f(x)$のグラフ$G$と円$C$はそれぞれ3点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通るものとする.このとき,次の各問に答えよ.

(1)$f(x)$を求めよ.
(2)円$C$の中心の座標および半径を求めよ.
(3)グラフ$G$と円$C$との交点のうち,3点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$以外の点の座標を求めよ.
宮崎大学 国立 宮崎大学 2010年 第2問
座標平面に原点O$(0,\ 0)$,点A$(-1,\ 3)$,点B$(4,\ 8)$がある.さらに,2次関数$y=f(x)$のグラフ$G$と円$C$はそれぞれ3点O,A,Bを通るものとする.このとき,次の各問に答えよ.

(1)$f(x)$を求めよ.
(2)円$C$の中心の座標および半径を求めよ.
(3)グラフ$G$と円$C$との交点のうち,3点O,A,B以外の点の座標を求めよ.
岡山大学 国立 岡山大学 2010年 第3問
原点を中心とする半径1の円を$C_1$とし,原点を中心とする半径$\displaystyle \frac{1}{2}$の円を$C_2$とする.$C_1$上に点P$_1(\cos \theta,\ \sin \theta)$があり,また,$C_2$上に点P$_2 \displaystyle (\frac{1}{2} \cos 3\theta,\ \frac{1}{2} \sin 3\theta)$がある.ただし,$\displaystyle 0 \leqq \theta < \frac{\pi}{2}$であるとする.線分P$_1$P$_2$の中点をQとし,点Qの原点からの距離を$r(\theta)$とする.このとき,次の問いに答えよ.

(1)点Qの$x$座標の取りうる範囲を求めよ.
(2)点Qが$y$軸上にあるときの$\theta$の値を$\alpha$とする.このとき,$\alpha$および定積分
\[ \int_0^\alpha \{r(\theta)\}^2 \, d\theta \]
を求めよ.
宮崎大学 国立 宮崎大学 2010年 第5問
座標平面上に2つの円
\begin{eqnarray}
& & C_1:(x+1)^2+(y-1)^2=1 \nonumber \\
& & C_2:(x-1)^2+(y-1)^2=1 \nonumber
\end{eqnarray}
がある.不等式$y>2$が表す領域$D$内に点P$(a,\ b)$をとる.点Pから円$C_1,\ C_2$にひいた接線と$x$軸との交点をそれぞれA,Bとする.ただし,下図のように$\triangle$PABは円$C_1,\ C_2$をともに含むものとする.このとき,次の各問に答えよ.

(1)$b$を定数とするとき,辺ABの長さが最小となるのは$a=0$のときであることを示せ.
(2)点Pが領域$D$内を動くとき,$\triangle$PABの面積の最小値を求めよ.


\setlength\unitlength{1truecm}
(図は省略)
東京医科歯科大学 国立 東京医科歯科大学 2010年 第3問
$xy$平面において,次の円$C$と楕円$E$を考える.
\begin{eqnarray}
& & C:x^2+y^2=1 \nonumber \\
& & E:x^2+\frac{y^2}{2}=1 \nonumber
\end{eqnarray}
また,$C$上の点$\mathrm{P}(s,\ t)$における$C$の接線を$\ell$とする.このとき以下の各問いに答えよ.

(1)$\ell$の方程式を$s,\ t$を用いて表せ.
以下,$t>0$とし,$E$が$\ell$から切り取る線分の長さを$L$とする.
(2)$L$を$t$を用いて表せ.
(3)$\mathrm{P}$が動くとき,$L$の最大値を求めよ.
(4)$L$が(3)で求めた最大値をとるとき,$\ell$と$E$が囲む領域のうち,原点を含まない領域の面積を$A$とする.$A$の値を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2010年 第3問
$xy$平面において,次の円$C$と楕円$E$を考える.
\begin{eqnarray}
& & C:x^2+y^2=1 \nonumber \\
& & E:x^2+\frac{y^2}{2}=1 \nonumber
\end{eqnarray}
また,$C$上の点P$(s,\ t)$における$C$の接線を$\ell$とする.このとき以下の各問いに答えよ.

(1)$\ell$の方程式を$s,\ t$を用いて表せ.
以下,$t>0$とし,$E$が$\ell$から切り取る線分の長さを$L$とする.
(2)$L$を$t$を用いて表せ.
(3)Pが動くとき,$L$の最大値を求めよ.
(4)$L$が(3)で求めた最大値をとるとき,$\ell$と$E$が囲む領域のうち,原点を含まない領域の面積を$A$とする.$A$の値を求めよ.
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。