タグ「円」の検索結果

81ページ目:全908問中801問~810問を表示)
静岡大学 国立 静岡大学 2010年 第4問
$xy$平面上で,点A$(-1,\ 0)$を中心とする円$C_1$と点B$(1,\ 0)$を中心とする円$C_2$が原点Oで外接している.点Pは円$C_1$上を,点Qは円$C_2$上を,それぞれ正の向きに回転する.今,P,Qが同時に原点を出発して,QはPの2倍の速さで回転する.このとき,次の問いに答えよ.

(1)$\angle \text{OAP} = \theta$とするとき,P,Qの座標をそれぞれ$\theta$を用いて表せ.
(2)線分PQの長さの最大値を求めよ.
埼玉大学 国立 埼玉大学 2010年 第1問
平面上の点$(a,\ b)$は円$x^2 + y^2-100 = 0$上を動き,点$(c,\ d)$は円$x^2 + y^2-6x-8y+24 = 0$上を動くものとする.

(1)$ac+bd = 0$を満たす$(a,\ b)$と$(c,\ d)$の例を一組あげよ.
(2)$ac+bd$の最大値を求めよ.
金沢大学 国立 金沢大学 2010年 第3問
Oを原点とする座標平面上の円$C:x^2+y^2=1$と直線$x+2y=1$の交点のうち,$x$座標の小さい方をP,他方をQとする.点P,Qにおける円$C$の接線をそれぞれ$\ell,\ m$とする.次の問いに答えよ.

(1)P,Qの座標を求めよ.また,$\ell$と$m$の交点Rの座標を求めよ.
(2)線分ORと$C$の交点をSとする.Sの座標を求めよ.また,$\triangle$QRSの面積を求めよ.
(3)$\angle \text{PQS}=\angle \text{RQS}$であることを示せ.
九州大学 国立 九州大学 2010年 第4問
中心$(0,\ a)$,半径$a$の円を$xy$平面上の$x$軸の上を$x$の正の方向に滑らないように転がす.このとき円上の定点$\mathrm{P}$が原点$(0,\ 0)$を出発するとする.次の問いに答えよ.

(1)円が角$t$だけ回転したとき,点$\mathrm{P}$の座標を求めよ.
(2)$t$が$0$から$2\pi$まで動いて円が一回転したときの点$\mathrm{P}$の描く曲線を$C$とする.曲線$C$と$x$軸とで囲まれる部分の面積を求めよ.
(3)$(2)$の曲線$C$の長さを求めよ.
九州大学 国立 九州大学 2010年 第3問
$xy$平面上に原点Oを中心とする半径1の円を描き,その上半分を$C$とし,その両端をA$(-1,\ 0)$,B$(1,\ 0)$とする.$C$上の2点N,Mを$\text{NM}=\text{MB}$となるように取る.ただし,$\text{N} \neq \text{B}$とする.このとき,次の問いに答えよ.

(1)$\angle \text{MAB}=\theta$とおき,弦の長さMB及び点Mの座標を$\theta$を用いて表せ.
(2)点Nから$x$軸に下ろした垂線をNPとしたとき,PBを$\theta$を用いて表せ.
(3)$t=\sin \theta$とおく.条件$\text{MB}=\text{PB}$を$t$を用いて表せ.
(4)$\text{MB}=\text{PB}$となるような点Mが唯一あることを示せ.
岩手大学 国立 岩手大学 2010年 第1問
次の問いに答えよ.

(1)$2$つのベクトル$\overrightarrow{a}=(-1,\ 1),\ \overrightarrow{b}=(3,\ -2)$に対して,$\overrightarrow{a}+\overrightarrow{b}$と$\overrightarrow{a}+t\overrightarrow{b}$が垂直になるように,実数$t$の値を求めよ.
(2)$\displaystyle \lim_{x \to 3} \frac{\sqrt{x+k}-3}{x-3}$が有限な値になるように,定数$k$の値を定め,その極限値を求めよ.
(3)$1$個のサイコロを投げて,出る目の数を$a$とする.このとき,楕円$3x^2+y^2=12$と直線$x-y+a=0$の共有点の個数の期待値を求めよ.
九州大学 国立 九州大学 2010年 第5問
実数を成分とする$2$次正方行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$を考える.平面上の点$\mathrm{P}(x,\ y)$に対し,点$\mathrm{Q}(X,\ Y)$を
\[ \left( \begin{array}{c}
X \\
Y
\end{array} \right) = \left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right) \left( \begin{array}{c}
x \\
y
\end{array} \right) \]
により定める.このとき,次の問いに答えよ.

(1)$\mathrm{P}$が放物線$y = x^2$全体の上を動くとき,$\mathrm{Q}$が放物線$9X = 2Y^2$全体の上を動くという.このとき,行列$A$を求めよ.
(2)$\mathrm{P}$が放物線$y = x^2$全体の上を動くとき,$\mathrm{Q}$は常に円$X^2+(Y-1)^2=1$の上にあるという.このとき,行列$A$を求めよ.
(3)$\mathrm{P}$が放物線$y = x^2$全体の上を動くとき,$\mathrm{Q}$がある直線$L$全体の上を動くための$a,\ b,\ c,\ d$についての条件を求めよ.また,その条件が成り立っているとき,直線$L$の方程式を求めよ.
弘前大学 国立 弘前大学 2010年 第7問
座標平面において,原点を中心とする半径$3$の円を$C$,点$(0,\ -1)$を中心とする半径$8$の円を$C^{\, \prime}$とする.$C$と$C^{\, \prime}$にはさまれた領域を$D$とする.

(1)$0 \leqq k \leqq 3$とする.直線$\ell$と原点との距離が一定値$k$であるように$\ell$が動くとき,$\ell$と$D$の共通部分の長さの最小値を求めよ.
(2)直線$\ell$が$C$と共有点をもつように動くとき,$\ell$と$D$の共通部分の長さの最小値を求めよ.
埼玉大学 国立 埼玉大学 2010年 第4問
半径$R$の円$C$の中心を通る直線を$\ell$とする.円$C$上の2点A,Bは弦ABが$\ell$と交わらないように動くものとする.$\ell$を軸として弦ABを回転させてできる図形の面積を$S$とする.ただし,直線$\ell$は円$C$と同一平面上にあるものとする.

(1)弦ABの長さを一定とするならば,弦ABが$\ell$と平行のとき$S$が最大となることを証明せよ.
(2)弦ABの長さが変化するとき,$S$の最大値を求めよ.
金沢大学 国立 金沢大学 2010年 第1問
座標平面において,円$x^2+y^2=1$上の点P$(a,\ b) \ (0<b<1)$における接線を$\ell$とし,$\ell$と$x$軸の交点をQとする.点R$(4,\ 0)$と$\ell$の距離が2であるとき,次の問いに答えよ.

(1)点Pの座標$(a,\ b)$を求めよ.
(2)$\triangle$PQRの面積を求めよ.
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。