タグ「円」の検索結果

79ページ目:全908問中781問~790問を表示)
津田塾大学 私立 津田塾大学 2011年 第2問
単位円上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標をそれぞれ$(-1,\ 0)$,$\displaystyle \left( \frac{1}{2},\ -\frac{\sqrt{3}}{2} \right)$,$\displaystyle \left( \frac{\sqrt{3}}{2},\ -\frac{1}{2} \right)$とする.単位円上の点$\mathrm{P}$が
\[ \triangle \mathrm{ABC} \text{の面積}:\triangle \mathrm{ABP} \text{の面積}=1:1+\sqrt{3} \]
をみたすとき,点$\mathrm{P}$の座標を求めよ.
青山学院大学 私立 青山学院大学 2011年 第4問
実数$t$は$t>1$を満たすとする.点$\displaystyle \left( \frac{1}{2},\ t \right)$から,円$x^2+y^2=1$に相異なる$2$本の接線を引き,$2$つの接点を通る直線を$\ell$とする.

(1)直線$\ell$の方程式を$t$を用いて表せ.
(2)$t$を$t>1$の範囲で動かすとき,$t$によらず$\ell$が通る点がある.この点の座標を求めよ.
首都大学東京 公立 首都大学東京 2011年 第3問
原点を$\mathrm{O}$とする座標平面上に点$\mathrm{A}(3,\ 0)$を中心とし半径が$r_1$の円$C_1$と,点$\mathrm{B}(1,\ 0)$を中心とし半径が$r_2$の円$C_2$がある.$C_1$上に$y$座標が正である点$\mathrm{P}_1$をとり,$\angle \mathrm{OAP}_1 = \theta$とする.$C_2$上に$y$座標が負である点$\mathrm{P}_2$を,ベクトル$\overrightarrow{\mathrm{AP}_1}$と$\overrightarrow{\mathrm{BP}_2}$が平行であるようにとるとき,以下の問いに答えなさい.

(1)$\mathrm{P}_1$,$\mathrm{P}_2$の座標を$r_1,\ r_2,\ \theta$でそれぞれ表しなさい.
(2)$r_1+r_2 < 2$とする.$\mathrm{P}_1$,$\mathrm{P}_2$を通る直線が$C_1$と$C_2$の両方に接するとき,$\cos \theta$を求めなさい.
(3)$(2)$の条件のもとで$\triangle \mathrm{OP}_1 \mathrm{P}_2$の面積を$r_1,\ r_2$で表しなさい.
大阪市立大学 公立 大阪市立大学 2011年 第1問
座標平面において,原点$\mathrm{O}$を中心とする半径$1$の円を$C$とし,点$\mathrm{P}(p,\ q)$は$p^2 +q^2 > 1$をみたすものとする.$\mathrm{P}$から$C$へ接線をひき,その接点を$\mathrm{T}(s,\ t)$とする.$\mathrm{P}$を中心とし$\mathrm{T}$を通る円を$D$として,$D$は点$\mathrm{A}(a,\ 0)$を通るものとする.次の問いに答えよ.

(1)$(a-p)^2 = p^2-1$であることを示せ.
(2)$0<a<1$のとき$p>1$であることを示し,$a$を$p$を用いて表せ.
大阪府立大学 公立 大阪府立大学 2011年 第1問
$r$を正の定数とし,$n$を$3$以上の自然数とする.$C$が半径が$r$の円とする.円$C$に内接する正$n$角形の$1$辺の長さを$s_n$,円$C$に外接する正$n$角形の$1$辺の長さを$t_n$とする.ただし,正$n$角形が円$C$に外接するとは,円$C$が正$n$角形のすべての辺に接することである.

(1)$s_n$を$r$と$n$を用いて表せ.
(2)$\displaystyle \frac{s_n}{t_n}$を$n$を用いて表せ.
(3)$s_5=2$であるとき,円$C$に内接する正$5$角形の面積を,小数第$3$位を四捨五入して小数第$2$位まで求めよ.ただし,$\tan 36^\circ=0.727$としてよい.
愛知県立大学 公立 愛知県立大学 2011年 第2問
方程式$y=-x^2+2x+8$で表される放物線を$C_1$とする.放物線$C_1$と$x$軸とで囲まれた図形の内部にある円で,放物線$C_1$と$x$軸に$3$点で接するものを$C_2$とする.放物線$C_1$と$x$軸との$2$つの交点,および放物線$C_1$の頂点を通る円を$C_3$とする.このとき,以下の問いに答えよ.

(1)円$C_2$の方程式を求めよ.
(2)円$C_3$の面積が円$C_2$の面積の何倍になるか求めよ.
(3)放物線$C_1$の頂点を通り,円$C_2$に接する$2$つの接線の方程式を求めよ.
滋賀県立大学 公立 滋賀県立大学 2011年 第2問
$x$軸とのなす角が$\displaystyle 2\theta \ \left(0<\theta<\frac{\pi}{4} \right)$で原点Oを通る直線$\ell$と,$x$軸上の定点A$(a,\ 0) \ (a>0)$と$y$軸上の定点B$(0,\ b) \ (b>0)$がある.円$C_1$,円$C_2$は$\ell$と接し,かつ$C_1$は$x$軸とAで接し,$C_2$は$y$軸とBで接するものとする.$C_1$,$C_2$の中心をそれぞれP$_1$,P$_2$とする.ただし,P$_1$,P$_2$は第1象限の点である.

(1)$\triangle$OP$_1$P$_2$の面積は$\displaystyle S=\frac{ab}{\sin 2\theta + \cos 2\theta+1}$であることを示せ.
(2)$\theta$を変数としたとき,$S$の最小値を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2011年 第4問
座標平面において,原点を通り傾きが$\tan 2\theta$の直線を$\ell$で表す.ただし,$\theta$は$\displaystyle 0<\theta<\frac{\pi}{4}$を満たすとする.中心が第1象限に属し,直線$\ell$と$x$軸に接する半径1の円$C$を考える.さらに,円$C$と直線$\ell$および$x$軸に接し,中心が第1象限に属する2つの円のうち,面積が大きいものを$C^\prime$で表す.以下の問いに答えよ.

(1)円$C$の方程式を求めよ.
(2)円$C^\prime$の半径を,$\theta$の関数として表せ.
(3)円$C^\prime$の円周の長さが,円$C$の円周の長さの3倍になるように$\theta$の値を定めよ.
名古屋市立大学 公立 名古屋市立大学 2011年 第2問
半径$1$の円が直線上を一定の速さ$a (a>0)$で滑らないように回転しながら進んでいる.時刻$0$において直線と接している円周上の点を$\mathrm{P}$,時刻$0$から$t$までに円が回転した角度を$\theta$とする.次の問いに答えよ.

(1)時刻$t$における$\mathrm{P}$の速度ベクトルの大きさ$|\overrightarrow{v(t)}|$を求めよ.
(2)積分$\displaystyle \int_0^{\frac{2\pi}{a}} |\overrightarrow{v(t)}| \, dt$を求めよ.
名古屋市立大学 公立 名古屋市立大学 2011年 第3問
点$\mathrm{O}$を中心とする半径$r$の円の内部にある点を$\mathrm{A}$とする.この円周上の点$\mathrm{P}$について,線分$\mathrm{AP}$の垂直二等分線と直線$\mathrm{OP}$の交点を$\mathrm{Q}$とする.点$\mathrm{P}$がこの円周上を動くとき,点$\mathrm{Q}$が描く軌跡を求めよ.
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。