タグ「円」の検索結果

76ページ目:全908問中751問~760問を表示)
関西大学 私立 関西大学 2011年 第2問
点$(a,\ b) (a>0,\ b>0)$を中心とする円$C$が直線$y=2x$に点$\mathrm{P}$で接するとする.次の問いに答えよ.

(1)接点$\mathrm{P}$の座標を$a,\ b$を用いて表せ.
(2)円$C$がさらに$y=x$にも接するとする.$b$を$a$を用いて表せ.
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~サに当てはまる数または式を記入せよ.

(1)$2$つの異なる$2$次方程式$x^2+3px+4=0$,$x^2+3x+4p=0$が共通の実数解を持つとき,$p$の値は$[ア]$である.ただし,$p \neq 1$とする.
(2)三角形$\mathrm{ABC}$において,$\mathrm{BC}=6$,$\mathrm{CA}=4$,$\displaystyle \cos C=\frac{1}{3}$であるとき,$\sin A$の値は$[イ]$である.
(3)不等式$|2x|+|x-4|<6$を解くと,$[ウ]$となる.
(4)実数$x,\ y$が$(3+2i)x+(1-i)y+13+2i=0$を満たすとき,$x=[エ]$,$y=[オ]$である.ただし,$i$は虚数単位とする.
(5)点$\mathrm{Q}$が円$x^2+y^2=4$上を動くとき,点$\mathrm{P}(3,\ 0)$と点$\mathrm{Q}$の中点の軌跡の方程式は$[カ]$である.
(6)$\displaystyle \cos \theta=\frac{1}{5}$のとき,$\tan \theta=[キ]$である.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
(7)$a=\log_{10}2$,$b=\log_{10}3$とするとき,$\displaystyle \log_{100}\frac{125}{9}$を$a,\ b$を用いて表すと,$[ク]$となる.
(8)等式$\displaystyle f(x)=x^2+4x-\int_0^1 f(t) \, dt$を満たす関数$f(x)$は,$[ケ]$である.
(9)数列$2,\ 4,\ 9,\ 17,\ 28,\ 42,\ \cdots$の第$n$項を$n$を用いて表すと,$[コ]$となる.
\mon 座標空間上に$3$つの点,$\mathrm{A}(1,\ 3,\ -1)$,$\mathrm{B}(-1,\ 2,\ 2)$,$\mathrm{C}(2,\ 0,\ 1)$をとるとき,三角形$\mathrm{ABC}$の重心の座標は$[サ]$である.
神奈川大学 私立 神奈川大学 2011年 第1問
次の空欄を適当に補え.

(1)円$x^2+2x+y^2-6y-6=0$の半径は$[ア]$であり,中心の座標は$[イ]$である.

(2)$\displaystyle 2 \log_84+\log_3 \sqrt{15}-\frac{1}{\log_59}$を計算すると$[ウ]$である.

(3)$0 \leqq x<2\pi$とする.方程式$\cos 2x-5 \cos x+3=0$を解くと,$x=[エ],\ [オ]$である.
(4)$0,\ 1,\ 2,\ 3,\ 4$の$5$つの数字から同じ数字を繰り返し使わずに作れる$3$桁の偶数は全部で$[カ]$個ある.
立教大学 私立 立教大学 2011年 第1問
次の空欄アに$①$~$④$のいずれかを記入せよ.また空欄イ~スに当てはまる数または式を記入せよ.

(1)実数$x,\ y$に対して,$x^2+y^2 \leqq 1$は「$-1 \leqq x \leqq 1$かつ$-1 \leqq y \leqq 1$」であるための何条件かを,$①$「必要条件」,$②$「十分条件」,$③$「必要十分条件」,$④$「必要条件でも十分条件でもない」のうちから選択すると,$[ア]$となる.
(2)$3x^2-xy-2y^2-x+6y+k$が,$x,\ y$の整数係数の$1$次式の積に因数分解されるとき,$k=[イ]$である.
(3)$3$つの数$\log_2 x$,$\log_2 10$,$\log_2 20$がこの順で等差数列であるとき,$x=[ウ]$である.
(4)$\displaystyle \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots +\frac{1}{100 \cdot 101}=\frac{[エ]}{[オ]}$である.
(5)座標平面上の曲線$y=x^3+ax^2+bx$上の点$(2,\ 4)$における接線が$x$軸に平行であるとき,$a=[カ]$,$b=[キ]$である.
(6)自宅から$2000 \; \mathrm{m}$離れている駅まで,はじめに毎分$80 \; \mathrm{m}$で歩き,途中から毎分$170 \; \mathrm{m}$で走るものとする.出発してから$16$分以内に駅に到着するには,歩きはじめてから$[ク]$分以内に走り出さなければならない.
(7)点$\mathrm{A}(2,\ 3)$,点$\mathrm{B}(p,\ q)$と原点$\mathrm{O}$がつくる三角形$\mathrm{OAB}$について,$\angle \mathrm{OAB}=90^\circ$のとき,$p,\ q$の満たす条件は$p \neq 2$かつ$p=[ケ]$である.
(8)実数$x,\ y,\ a,\ b$が条件$x^2+y^2=2$,および$a^2+b^2=3$を満たすとき,$ax+by$の最大値は$[コ]$で,最小値は$[サ]$である.
(9)$\displaystyle x=\frac{\sqrt{6}-\sqrt{10}i}{3}$とし,$x$と共役な複素数を$y$とするとき,$x^3+y^3=[シ]$となる.ただし,$i$は虚数単位とする.
\mon $\displaystyle \sin x+\sin y=\frac{1}{3}$,$\displaystyle \cos x-\cos y=\frac{1}{2}$のとき,$\cos (x+y)$の値は$[ス]$である.
立教大学 私立 立教大学 2011年 第3問
座標平面上の点$\mathrm{A}(1,\ 1)$を中心とする円$(x-1)^2+(y-1)^2=1$上を,点$\mathrm{P}_0(2,\ 1)$から出発して一定の速度で反時計回りに動く点$\mathrm{P}$と,座標平面上の点$\mathrm{B}(-1,\ -1)$を中心とするもう$1$つの円$(x+1)^2+(y+1)^2=1$上を,点$\mathrm{Q}_0(-1,\ 0)$から出発して反時計回りに動く点$\mathrm{Q}$について考える.点$\mathrm{P}$と点$\mathrm{Q}$が各円周上を進む速度は等しいものとする.このとき,次の問に答えよ.

(1)図に示すように$\angle \mathrm{P}_0 \mathrm{AP}$ならびに$\angle \mathrm{Q}_0 \mathrm{BQ}$を$\theta$とするとき,点$\mathrm{P}$と点$\mathrm{Q}$それぞれの座標を$\theta$を用いて表せ.
(2)線分$\mathrm{PQ}$の長さの最大値と,そのときの点$\mathrm{P}$の位置$\mathrm{P}_1$と点$\mathrm{Q}$の位置$\mathrm{Q}_1$それぞれの座標を求めよ.また,線分$\mathrm{PQ}$の長さの最小値と,そのときの点$\mathrm{P}$の位置$\mathrm{P}_2$と点$\mathrm{Q}$の位置$\mathrm{Q}_2$それぞれの座標を求めよ.
(3)$(2)$で求めた$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{Q}_1$,$\mathrm{Q}_2$について,$4$点$\mathrm{P}_1$,$\mathrm{Q}_1$,$\mathrm{Q}_2$,$\mathrm{P}_2$がつくる四角形の面積を求めよ.
(図は省略)
広島修道大学 私立 広島修道大学 2011年 第2問
実数$x,\ y$が$x^2+y^2=2$を満たすとき,次の各問に答えよ.

(1)$t=x+y$とおくとき,$t$のとりうる値の範囲を求めよ.
(2)$S=x^2+6xy+y^2$とおくとき,$S$の最大値,最小値およびそのときの$x,\ y$の値を求めよ.
上智大学 私立 上智大学 2011年 第2問
底面の円の半径が$3 \; \mathrm{cm}$,高さが$6 \; \mathrm{cm}$の直円錐を考える.直円錐の頂点を$\mathrm{P}$,底面の円の中心を$\mathrm{Q}$とし,線分$\mathrm{PQ}$を$2:1$に内分する点を$\mathrm{O}$とする.底面の円の円周を$C_1$,$\mathrm{O}$を通り底面と平行な平面が直円錐と交わってできる円の円周を$C_2$とする.$2$点$\mathrm{A}$,$\mathrm{B}$がそれぞれ$C_1$,$C_2$上を頂点$\mathrm{P}$から見て左回りに移動している.点$\mathrm{A}$の速さは$3 \pi \,\mathrm{cm}/$秒,点$\mathrm{B}$の速さは$\pi \,\mathrm{cm}/$秒であり,時刻$t=0$において,$3$点$\mathrm{P}$,$\mathrm{B}$,$\mathrm{A}$は一直線上にあるとする.

(1)$\mathrm{A}$の角速度は$[コ] \pi$ラジアン$/$秒であり,$\mathrm{B}$の角速度は$\displaystyle \frac{[サ]}{[シ]} \pi$ラジアン$/$秒である.ただし,$\mathrm{A}$の角速度とは,動径$\mathrm{QA}$が$1$秒間に回転する角の大きさのことであり,$\mathrm{B}$の角速度とは,動径$\mathrm{OB}$が$1$秒間に回転する角の大きさのことである.
(2)線分$\mathrm{AB}$の長さを時刻$t$の関数で表すと
\[ \sqrt{[ス]-[セ] \cos \frac{\pi}{2}t } \mathrm{cm} \]
である.
(3)$\cos \angle \mathrm{AOB}$を時刻$t$の関数で表すと
\[ \frac{[ソ]}{\sqrt{[タ]}} \cos \frac{\pi}{2} t \]
である.
(4)三角形$\mathrm{AOB}$の面積を時刻$t$の関数で表すと
\[ \sqrt{[チ]-[ツ] \cos^2 \frac{\pi}{2}t } \mathrm{cm}^2 \]
である.
(5)$3$点$\mathrm{A}$,$\mathrm{O}$,$\mathrm{B}$を含む平面を$S$とする.$\mathrm{Q}$を通り,$S$と直交する直線を$\ell$とし,$\ell$と$S$の交点を$\mathrm{H}$とする.$\displaystyle t=\frac{1}{3}$のとき,線分$\mathrm{QH}$の長さは
\[ \frac{[テ]}{[ト]} \mathrm{cm} \]
である.
上智大学 私立 上智大学 2011年 第2問
$\mathrm{O}$を原点とする座標平面上に,放物線$F:y=x^2+1$および,点$\mathrm{A}(5,\ 0)$を中心とする半径$4$の円$C$がある.$F$上に点$\mathrm{P}(t,\ t^2+1)$,$C$上に点$\mathrm{Q}(a,\ b)$をとる.

(1)$\mathrm{P}$における放物線$F$の接線と直線$\mathrm{AP}$とが直交するとき,線分$\mathrm{AP}$の長さは$[タ] \sqrt{[チ]}$である.
(2)$\mathrm{Q}$を固定し,$\mathrm{P}$のみが動くとする.$\triangle \mathrm{OPQ}$の面積は$\displaystyle t=\frac{[ツ]}{[テ]} \frac{b}{a}$で最小値をとる.その最小値を$a$で表すと
\[ \frac{1}{8} \left( [ト]a+\frac{[ナ]}{a}+[ニ] \right) \]
である.
(3)$\mathrm{P}$,$\mathrm{Q}$がともに動くとする.$\triangle \mathrm{OPQ}$の面積は$\displaystyle a=\frac{[ヌ]}{[ネ]} \sqrt{[ノ]}$で最小値
\[ \frac{[ハ]}{[ヒ]}+\frac{[フ]}{[ヘ]} \sqrt{[ホ]} \]
をとる.
北海道文教大学 私立 北海道文教大学 2011年 第5問
$\mathrm{O}$を中心とする半径$2$の円の内部の点$\mathrm{P}$を通る弦$\mathrm{AB}$について$\mathrm{PA} \cdot \mathrm{PB}=1$であるとき,線分$\mathrm{OP}$の長さを求めなさい.
北海道文教大学 私立 北海道文教大学 2011年 第4問
赤玉$1$個,青玉$2$個,白玉$3$個が入っている袋から玉を$1$個取り出し,色を確認して袋に戻します.これを$2$回行いますが,$1$回目に赤玉を取り出したときは$1$回目で終了します.

青玉を取り出したときは賞金$500$円,白玉を取り出したときは賞金$300$円を獲得します.しかし,赤玉を取り出したときはそれまでに得た賞金はすべて没収されます.このとき,以下の問いに答えなさい.

(1)$1$回目の試行で終了する確率を求めなさい.
(2)賞金が$0$円になる確率を求めなさい.
(3)賞金の期待値を求めなさい.
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。