タグ「円」の検索結果

75ページ目:全908問中741問~750問を表示)
名城大学 私立 名城大学 2011年 第3問
$xy$平面上に,$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(5,\ 0)$,円$C:x^2+lx+y^2+my+n=0$($l,\ m,\ n$は実数)があり,$C$が$\mathrm{A}$,$\mathrm{B}$を通るとき,次の問に答えよ.

(1)$m$がすべての実数値をとるとき,$C$の中心の軌跡を求めよ.
(2)$m$がすべての実数値をとるとき,$C$の半径の最小値を求めよ.
(3)$C$が$y$軸と接するとき,$C$の方程式を求めよ.
名城大学 私立 名城大学 2011年 第3問
$xy$平面上に,$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(5,\ 0)$,円$C:x^2+lx+y^2+my+n=0$($l,\ m,\ n$は実数)があり,$C$が$\mathrm{A}$,$\mathrm{B}$を通るとき,次の問に答えよ.

(1)$m$がすべての実数値をとるとき,$C$の中心の軌跡を求めよ.
(2)$m$がすべての実数値をとるとき,$C$の半径の最小値を求めよ.
(3)$C$が$y$軸と接するとき,$C$の方程式を求めよ.
龍谷大学 私立 龍谷大学 2011年 第3問
円$C:x^2+y^2=1$上を動く点$\mathrm{P}$は,時刻$0$のときに点$\mathrm{A}(1,\ 0)$を出発して,時刻$t$のとき,弧$\koa{$\mathrm{AP}$}$の長さが$t$となるように反時計回りに動く.また,円$D:x^2+(y-1)^2=1$上を動く点$\mathrm{Q}$は,時刻$0$のときに点$\mathrm{O}(0,\ 0)$を出発して,時刻$t$のとき,弧$\koa{$\mathrm{OQ}$}$の長さが$t$となるように反時計回りに動く.時刻$t$が$0 \leqq t \leqq \pi$のとき,以下の問いに答えなさい.

(1)点$\mathrm{P}$,$\mathrm{Q}$の座標を$t$を用いて表しなさい.
(2)$\displaystyle t=\frac{\pi}{6}$のときの線分$\mathrm{PQ}$の長さを求めなさい.
(3)線分$\mathrm{PQ}$の長さの最小値を求めなさい.また,そのときの線分$\mathrm{PQ}$を図示しなさい.
西南学院大学 私立 西南学院大学 2011年 第3問
$1$辺の長さが$1$の正方形$\mathrm{ABCD}$が,円に内接している.小さい方の弧$\mathrm{AD}$上に点$\mathrm{P}$を,$\displaystyle \angle \mathrm{ABP}=\frac{\pi}{6}$となるようにとるとき,以下の問に答えよ.

(1)この外接円の面積は$\displaystyle \frac{[ヌ]}{[ネ]} \pi$である.
(2)線分$\mathrm{BP}$と辺$\mathrm{AD}$との交点を$\mathrm{Q}$とする.このとき,四角形$\mathrm{BCDQ}$の面積は,$\displaystyle \frac{[ノ]-\sqrt{[ハ]}}{[ヒ]}$である.
(3)三角形$\mathrm{ABP}$の面積は,$\displaystyle \frac{[フ]+\sqrt{[ヘ]}}{[ホ]}$である.
上智大学 私立 上智大学 2011年 第2問
実数$k$に対し,円$C:x^2+y^2+(k-1)x-ky-1=0$を考える.

(1)円$C$の半径が最も小さくなるのは$\displaystyle k=\frac{[キ]}{[ク]}$のときであり,その半径は$\displaystyle \frac{[ケ] \sqrt{[コ]}}{[サ]}$である.
(2)円$C$の中心の軌跡は
\[ [シ]x+[ス]y+1=0 \]
である.
(3)任意の実数$k$に対し,円$C$は必ず
\[ \left( \frac{[セ]}{[ソ]},\ \frac{[タ]}{[チ]} \right),\quad \left( [ツ],\ [テ] \right) \]
を通る.ただし$\displaystyle \frac{[セ]}{[ソ]}<[ツ]$である.
$k=3$のとき,この$2$点における円の接線の交点は
\[ \left( \frac{[ト]}{[ナ]},\ \frac{[ニ]}{[ヌ]} \right) \]
である.
上智大学 私立 上智大学 2011年 第2問
座標平面において,円$A$
\[ A:(x-4)^2+(y+1)^2=9 \]
および放物線$B$
\[ B:y=\frac{1}{4}x^2+1 \]
を考える.

(1)$m$を実数とすると,直線$\ell:y=mx+m-1$は$m$の値によらずに点$([エ],\ [オ])$を通る.
(2)$\ell$と円$A$との共有点の個数を$n_a$,$\ell$と放物線$B$との共有点の個数を$n_b$とする.$n_a+n_b=2$となるのは,$m<[カ]$または$\displaystyle \frac{[キ]}{[ク]}<m<\frac{[ケ]}{[コ]}$または$[サ]<m$のときである.
(3)$m=[カ]$のとき$\ell$と$B$とのただ一つの共有点は$\mathrm{P}([シ],\ [ス])$であり,$m=[サ]$のとき$\ell$と$B$とのただ一つの共有点は$\mathrm{Q}([セ],\ [ソ])$である.
(4)$2$点$\mathrm{P}$,$\mathrm{Q}$を通る直線の方程式は$\displaystyle y=\frac{[タ]}{[チ]}x+[ツ]$であり,直線$\mathrm{PQ}$と放物線$B$とで囲まれた図形の面積は$[テ]$である.
日本女子大学 私立 日本女子大学 2011年 第1問
$\triangle \mathrm{ABC}$において,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に向かい合う辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$で表す.$a=4$,$b=5$,$c=6$のとき,次の問いに答えよ.

(1)$\sin \angle \mathrm{A}$の値を求めよ.
(2)この三角形の面積$S$を求めよ.
(3)この三角形の外接円の半径$R$を求めよ.
(4)この三角形の内接円の半径$r$を求めよ.
(5)図のように,この三角形の辺$\mathrm{AB}$と辺$\mathrm{AC}$の延長および辺$\mathrm{BC}$に接する円の半径$\ell$を求めよ.
(図は省略)
日本女子大学 私立 日本女子大学 2011年 第4問
点$\mathrm{O}$を中心とし,長さ$2r$の線分$\mathrm{AB}$を直径とする円の周上を動く点$\mathrm{P}$がある.$\triangle \mathrm{ABP}$の面積を$S_1$,扇形$\mathrm{OPB}$の面積を$S_2$とするとき,次の問いに答えよ.

(1)$\displaystyle \angle \mathrm{PAB}=\theta (0<\theta<\frac{\pi}{2})$とするとき,$S_1$と$S_2$を求めよ.
(2)$\mathrm{P}$が$\mathrm{B}$に限りなく近づくとき,$\displaystyle \frac{S_1}{S_2}$の極限値を求めよ.
西南学院大学 私立 西南学院大学 2011年 第5問
年利率$0.05$,$1$年ごとの複利で借金をする.今年の年度初めに$1000$万円を借りた.$1$年後(今年の年度末)から返済を開始し,毎年,年度末に同じ金額を返済するものとする.このとき,以下の問に答えよ.ただし,$1.05^7=1.407$,$1.05^8=1.477$,$1.05^9=1.551$,$1.05^{10}=1.629$として計算せよ.

(注)複利での借金とは次のようなものである.ある年の年度初めに年利率$r$で$A$円を借りると,$1$年後の借金は$A(1+r)$円になる.ここで$B$円を返すと,$1$年目の年度末の借金残額は$\{A(1+r)-B\}$円になるから,$2$年後の借金は$\{A(1+r)-B\}(1+r)$円になる.

(1)毎年,年度末に$100$万円を返済するとき,$1$年目の年度末の借金残額はいくらになるか.
(2)$10$年目の年度末に返済を完了するためには,毎年,いくらずつ返済すればよいか.ただし,最後の答は,一万円未満を切り捨てて,一万円までの概数で答えよ.
(3)毎年,年度末に$100$万円を返済するとき,借金残額が初めて$500$万円以下となるのは何年目の年度末か.
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~セに当てはまる数を記入せよ.

(1)$(x+1)^5$の$x^3$の係数は$[ア]$である.
(2)中心を$\mathrm{O}$とする円の円周上に異なる$2$点$\mathrm{A}$,$\mathrm{B}$があり,$\mathrm{AB}=3$とするとき,$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AO}}$の内積は,$[イ]$である.
(3)$y=x^2+px+q (pq \neq 0)$のグラフが点$(1,\ 1)$を通り,$x$軸に接するとき,$p=[ウ]$,$q=[エ]$である.
(4)$120$人の学生の通学手段について調査したところ,電車を利用する学生が$83$人,バスを利用する学生が$48$人,電車もバスも利用しない学生が$28$人であった.電車とバスの両方を利用する学生は$[オ]$人である.
(5)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$の$6$枚のカードをよくきって,$6$枚を$1$列に並べるとき,$\mathrm{A}$と$\mathrm{B}$が隣り合う確率は$[カ]$である.
(6)$2$次方程式$x^2-4x-2=0$の解を$\alpha,\ \beta$とする.$\displaystyle \frac{\alpha^2}{\beta}$と$\displaystyle \frac{\beta^2}{\alpha}$を解とする$2$次方程式を$x^2+px+q=0$とするとき,$p=[キ]$,$q=[ク]$である.
(7)方程式$\log_2 \sqrt[3]{x}-\log_4 4x^3+8=0$の解は$x=[ケ]$である.
(8)$x+x^{-1}=7$のとき,$x^{\frac{1}{4}}+x^{-\frac{1}{4}}$は$[コ]$である.ただし,$x>0$とする.
(9)$100$以下の自然数の中で,$4$で割ると$1$余る数の総和は$[サ]$である.
\mon $f^\prime(x)$を$f(x)$の導関数とする.$f^\prime(x)=3x^2-4x-1$,$f(1)=0$を満たすとき,$f(x)$を$f(x)=x^3+px^2+qx+r$とおくと,$p=[シ]$,$q=[ス]$,$r=[セ]$である.
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。