タグ「円」の検索結果

74ページ目:全908問中731問~740問を表示)
南山大学 私立 南山大学 2011年 第2問
中心の座標がそれぞれ$(-1,\ a)$,$(1,\ b)$で,ともに$x$軸に接している$2$つの円がある.これらの円は点$\mathrm{P}$で互いに接している.ただし,$a,\ b>0$とする.

(1)$b$を$a$で表せ.
(2)$\mathrm{P}$の座標を$a$で表せ.
(3)$\mathrm{P}$で$2$つの円に接する直線はある定点を通る.この定点の座標を求めよ.
(4)$\mathrm{P}$の軌跡を求めよ.
(図は省略)
南山大学 私立 南山大学 2011年 第1問
$[ ]$の中に答を入れよ.

(1)循環小数$1. \dot{4} \dot{6}$を分数で表すと$[ア]$である.$1. \dot{4} \dot{6}+2. \dot{7}$を循環小数で表すと$[イ]$となる.
(2)$f(\theta)=\sqrt{3} \sin 2\theta-\cos 2\theta+\sqrt{3} \sin \theta+\cos \theta$とする.$x=\sqrt{3} \sin \theta+\cos \theta$として,$f(\theta)$を$x$で表すと$[ウ]$となる.$0 \leqq \theta \leqq \pi$であるとき,関数$f(\theta)$の最大値は$[エ]$である.
(3)$\displaystyle \left( \frac{4}{3} \right)^n$の整数部分が$10$桁になるような整数$n$は$[オ]$個ある.$n$がその中で$4$番目に小さい整数であるとき,$\displaystyle \left( \frac{4}{3} \right)^n$の最高位の数字は$[カ]$である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(4)円$(x-2)^2+y^2=1$と直線$y=mx$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わるとき,$m$の値の範囲は$[キ]$であり,原点を$\mathrm{O}$とするとき,線分$\mathrm{OP}$の長さと線分$\mathrm{OQ}$の長さの積は$[ク]$である.
(5)図のように半径$r$の半球面に円柱が内接している.円柱の体積が最大になるのは円柱の高さが$[ケ]$のときであり,その円柱の体積は$[コ]$である.
(図は省略)
南山大学 私立 南山大学 2011年 第1問
$[ ]$の中に答を入れよ.

(1)関数$\displaystyle f(x)=\left( \frac{1}{9} \right)^x-12 \left( \frac{1}{3} \right)^x+40 (-3 \leqq x \leqq -1)$を考える.$-3 \leqq x \leqq -1$のとき,$\displaystyle t=\left( \frac{1}{3} \right)^x$のとりうる値の範囲を求めると$[ア]$である.また,$f(x)$の最小値$m$とそのときの$x$の値を求めると$(m,\ x)=[イ]$である.
(2)$0 \leqq \theta < 2\pi$とする.方程式$\cos 2\theta+3 \cos \theta-1=0$を解くと$\theta=[ウ]$である.また,方程式$\displaystyle \log_3 (\sqrt{3} \tan \theta+1)+\log_3 (\cos \theta)=\frac{1}{2}$を解くと$\theta=[エ]$である.
(3)$2x^3-ax^2-2x+a$を因数分解すると$[オ]$である.また,$P(x)=2x^3-ax^2-2x+a$,$Q(x)=-x^2+(2a-1)x+2a$とおくとき,すべての正の$x$について$P(x)-Q(x)>0$が成立するような$a$の値の範囲を求めると$[カ]$である.
(4)四角形$\mathrm{ABCD}$が半径$4$の円に内接し,$\mathrm{AB}=4$,$\mathrm{BC}=4 \sqrt{3}$,$\mathrm{CD}=\sqrt{3} \mathrm{DA}$とする.このとき,$\mathrm{AC}$の長さを求めると$\mathrm{AC}=[キ]$であり,$\mathrm{DA}$の長さを求めると$\mathrm{DA}=[ク]$である.
南山大学 私立 南山大学 2011年 第1問
$[ ]$の中に答を入れよ.

(1)$a,\ b$を実数($a \neq b$)とする.$2$つの$2$次関数
\[ y=x^2+ax+b,\quad y=x^2+bx+a \]
の最小値が同じであるとき,$a$を用いて$b$を表すと$b=[ア]$である.このとき,$2$つの$2$次関数のグラフの交点の座標は$[イ]$である.

(2)$2$つの行列$A=\left( \begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6
\end{array} \right)$,$B=\left( \begin{array}{cc}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array} \right)$の積$AB$を求めると$AB=[ウ]$である.$2$行$2$列の行列$C$で表される$1$次変換による$2$点$(1,\ 1)$,$(2,\ 3)$の像が,それぞれ,$(-3,\ 5)$,$(-8,\ 12)$であるとき,行列$C$を求めると$C=[エ]$である.
(3)$\alpha,\ \beta$は$0 \leqq \alpha < 2\pi$,$0 \leqq \beta < 2\pi$を満たす実数とし,$a=\cos \alpha$,$b=\cos \beta$とする.$A=\sin (\alpha+\beta) \sin (\alpha-\beta)$を$a$と$b$で表すと$A=[オ]$であり,$A$の値が$1$となるときの$\beta$の値は$\beta=[カ]$である.
(4)$k$を正の実数とする.直線$y=kx$と円$x^2+(y-3)^2=4$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わるとき,$k$の値の範囲は$[キ]$である.また,線分$\mathrm{PQ}$の長さが$2$となるのは,$k=[ク]$のときである.
(5)$5$人でじゃんけんを$1$回するとき,$1$人だけが勝つ確率$p$は$p=[ケ]$である.また,$5$人のじゃんけんを$1$人だけが勝つまで繰り返すとき,$n$回以内に$1$人だけが勝って終わる確率$q$を$n$を用いて表すと$q=[コ]$である.
甲南大学 私立 甲南大学 2011年 第2問
四角形$\mathrm{ABCD}$は円$\mathrm{O}$に内接し$\mathrm{AB}=\mathrm{BC}=\sqrt{2}$,$\mathrm{CD}=2$,$\mathrm{DA}=1+\sqrt{3}$とする.このとき,以下の問いに答えよ.

(1)$\angle \mathrm{ABC}$の大きさと線分$\mathrm{AC}$の長さを求めよ.
(2)四角形$\mathrm{ABCD}$の面積を求めよ.
(3)円$\mathrm{O}$の半径を求めよ.
甲南大学 私立 甲南大学 2011年 第2問
四角形$\mathrm{ABCD}$は円$\mathrm{O}$に内接し$\mathrm{AB}=\mathrm{BC}=\sqrt{2}$,$\mathrm{CD}=2$,$\mathrm{DA}=1+\sqrt{3}$とする.このとき,以下の問いに答えよ.

(1)$\angle \mathrm{ABC}$の大きさと線分$\mathrm{AC}$の長さを求めよ.
(2)四角形$\mathrm{ABCD}$の面積を求めよ.
(3)円$\mathrm{O}$の半径を求めよ.
名城大学 私立 名城大学 2011年 第1問
次の$[ ]$に適切な答えを入れよ.

(1)実数$x,\ y$が$x^2+y^2=5$を満たすとき,$x^2+3y+1$の最大値は$[ア]$であり,最小値は$[イ]$である.
(2)行列$A=\left( \begin{array}{cc}
a & b \\
c & 1
\end{array} \right)$が$b+c=1$,$b>c$,$A^2+3A-3E=O$を満たすとき,$a=[ウ]$,$b=[エ]$である.ただし,$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$,$O=\left( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right)$とする.
甲南大学 私立 甲南大学 2011年 第2問
座標平面上において,原点$\mathrm{O}$,点$\mathrm{A}(0,\ 1+\sqrt{3})$,点$\mathrm{B}(\sqrt{3},\ 2+\sqrt{3})$,点$\mathrm{C}(1+\sqrt{3},\ 0)$がある.このとき,以下の問いに答えよ.

(1)直線$\mathrm{AB}$を表す方程式と$\angle \mathrm{OAB}$の値を求めよ.
(2)$\angle \mathrm{OAB}$の二等分線の方程式を求めよ.
(3)中心が第$1$象限にあり,直線$\mathrm{AB}$,$x$軸,$y$軸に接する円$P$の方程式を求めよ.
(4)傾きが正で,かつ点$\mathrm{C}$を通り,$(3)$で求めた円$P$と接する直線$\ell$の方程式を求めよ.
龍谷大学 私立 龍谷大学 2011年 第2問
図のように,原点$\mathrm{O}$を中心とする半径$1$の円$C$上に$2$点$\mathrm{A}$,$\mathrm{B}$がある.点$\mathrm{A}$は第$3$象限にあり,点$\mathrm{A}$と点$\mathrm{B}$は$y$軸に関して対称である.また,$\angle \mathrm{AOB}=60^\circ$である.
(図は省略)

(1)点$\mathrm{A}$と点$\mathrm{B}$の座標を求めなさい.
(2)点$\mathrm{A}$における円$C$の接線$\ell$の方程式を求めなさい.
(3)点$\mathrm{A}$と点$\mathrm{B}$を通る放物線のうち,点$\mathrm{A}$における接線が$\ell$と一致するようなものの方程式を求めなさい.
名城大学 私立 名城大学 2011年 第1問
次の$[ ]$に適切な答えを入れよ.

(1)$\displaystyle x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}$のとき,$\displaystyle x+\frac{1}{x}=[ア]$,$\displaystyle x^3+\frac{1}{x^3}=[イ]$である.
(2)$x^2-x+y-6=0$,$y \geqq 0$のとき,$6x+y$の最大値は$[ウ]$,最小値は$[エ]$である.
(3)$a>0$とする.円$x^2+y^2-2ax-4ay+4a^2-1=0$が$x$軸と接するとき,$a=[オ]$であり,直線$x+y-1=0$と接するとき,$a=[カ]$である.
(4)放物線$C:y=x^2-2$と直線$\ell:y=x$がある.$C$と$x$軸によって囲まれる部分の面積は$[キ]$であり,$C$と$\ell$によって囲まれる部分の面積は$[ク]$である.
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。