タグ「円」の検索結果

72ページ目:全908問中711問~720問を表示)
長崎大学 国立 長崎大学 2011年 第2問
$3$辺の長さが$\mathrm{AB}=4,\ \mathrm{BC}=3,\ \mathrm{CA}=5$である直角三角形$\mathrm{ABC}$と,その内側にあって$2$辺$\mathrm{AB}$および$\mathrm{AC}$に接する円$\mathrm{O}$を考える.この円の半径を$r$とし,中心$\mathrm{O}$から$\mathrm{AB}$に引いた垂線と$\mathrm{AB}$との交点を$\mathrm{H}$とする.また,ベクトル$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AC}}$と同じ向きで大きさが$1$のベクトルを,それぞれ$\overrightarrow{u},\ \overrightarrow{v}$とし,$\overrightarrow{\mathrm{AH}}=t \overrightarrow{u} \ (t>0)$とする.次の問いに答えよ.

(1)直線$\mathrm{AO}$と辺$\mathrm{BC}$の交点を$\mathrm{M}$とするとき,ベクトル$\overrightarrow{\mathrm{AM}}$を$\overrightarrow{u}$と$\overrightarrow{v}$を用いて表せ.
(2)ベクトル$\overrightarrow{u},\ \overrightarrow{v}$の内積$\overrightarrow{u} \cdot \overrightarrow{v}$を求め,ベクトル$\overrightarrow{\mathrm{AO}}$と$\overrightarrow{\mathrm{HO}}$を,それぞれ$\overrightarrow{u},\ \overrightarrow{v}$および$t$を用いて表せ.また,円$\mathrm{O}$の半径$r$を$t$で表せ.
(3)円$\mathrm{O}$が辺$\mathrm{BC}$にも接するとき,その中心を$\mathrm{I}$とする.すなわち,$\mathrm{I}$は三角形$\mathrm{ABC}$の内心である.そのときの$t$の値と,内接円$\mathrm{I}$の半径を求めよ.
(4)円$\mathrm{O}$と内接円$\mathrm{I}$が共有点をもたないような$t$の範囲を求めよ.
長崎大学 国立 長崎大学 2011年 第7問
円$\displaystyle C_1:x^2+y^2-2 \sqrt{3}x-4y+3=0$と放物線$\displaystyle C_2:y=-\frac{1}{2}x^2+\frac{1}{2 \sqrt{3}}x+1$について,次の問いに答えよ.

(1)$C_1$と座標軸との共有点,および$C_2$と座標軸との共有点の座標を求めよ.
(2)連立不等式
\[ \left\{
\begin{array}{l}
x^2+y^2-2 \sqrt{3}x-4y+3 \leqq 0 \\
y \leqq -\displaystyle\frac{1}{2}x^2+\frac{1}{2 \sqrt{3}}x+1
\end{array}
\right. \]
を満たす点$(x,\ y)$全体からなる領域を$D$とする.$D$の面積$S$を求めよ.
(3)点$(x,\ y)$が領域$D$を動くとき,$x+y$の最大値を求めよ.
浜松医科大学 国立 浜松医科大学 2011年 第2問
医学部における研究では,いろいろな動物が用いられる.これらの動物を生育して,研究者たちに販売する者の立場から,動物$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を題材にして,以下の問題を考察する.

(1)動物$\mathrm{A}$,$\mathrm{B}$を生育するには,$3$種類の栄養素$p,\ q,\ r$が必要である.生育量(単位$\mathrm{kg}$)と栄養素の量は,ともに実数で示される.
(条件a) $\mathrm{A}$を$x \; \mathrm{kg}$生育するには,$p$が$5x$,$q$が$5x$,$r$が$x$の量,同時に必要である.$\mathrm{A}$の販売価格は$10$万円$/ \mathrm{kg}$である.
(条件b) $\mathrm{B}$を$y \; \mathrm{kg}$生育するには,$p$が$4y$,$q$が$y$,$r$が$2y$の量,同時に必要である.$\mathrm{B}$の販売価格は$5$万円$/ \mathrm{kg}$である.
手持ちの栄養素は今,$p$が$5$,$q$が$4$,$r$が$2$の量であると仮定する.このとき,$\mathrm{A}$,$\mathrm{B}$をそれぞれ何$\mathrm{kg}$生育すれば,販売額が最大となるか.販売額の最大値,およびそのときの$\mathrm{A}$,$\mathrm{B}$の生育量をそれぞれ求めよ.
(2)動物$\mathrm{A}$,$\mathrm{B}$に加えて,動物$\mathrm{C}$も$p,\ q,\ r$の栄養素によって生育できることがわかる.
(条件c) $\mathrm{C}$を$z \; \mathrm{kg}$生育するには,$p$が$2z$,$q$が$3z$,$r$が$z$の量,同時に必要である.$\mathrm{C}$の販売価格は$8$万円$/ \mathrm{kg}$である.
手持ちの栄養素は今,$p$が$5$,$q$が$4$の量であるが,(1)の場合と違って$r$はいくらでも手に入るものと仮定する.次の問い$(ⅰ),\ (ⅱ),\ (ⅲ)$に答えよ.

(i) $\mathrm{C}$の生育量$z \; \mathrm{kg}$は,$\displaystyle z=k \ \left( 0 \leqq k \leqq \frac{11}{10} \right)$として値を固定し,$\mathrm{A}$,$\mathrm{B}$の生育量をそれぞれ$x \; \mathrm{kg}$,$y \; \mathrm{kg}$として変化させる.このとき,点$(x,\ y)$の動く領域$D(k)$を図示せよ.さらに,$(x,\ y)$がこの領域を動くとき,販売額の最大値を$w(k)$とかく.$w(k)$を$k$の式で表せ.
(ii) $\mathrm{C}$の生育量$z=k$を,$\displaystyle 0 \leqq k \leqq \frac{11}{10}$の範囲から$\displaystyle \frac{11}{10} \leqq k \leqq \frac{4}{3}$の範囲に変更する.このとき,点$(x,\ y)$の動く領域$D(k)$および販売額の最大値$w(k)$はどうなるか,調べよ.
(iii) $\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$をそれぞれ何$\mathrm{kg}$生育すれば,販売額が最大となるか.販売額の最大値,およびそのときの$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の生育量をそれぞれ求めよ.
大分大学 国立 大分大学 2011年 第2問
直線$\ell_1:y=mx+3 (m>0)$が,点$\mathrm{A}(5,\ 3)$を中心とする円$C_1$に接している.その接点を$\mathrm{P}$とする.直線$\ell_1$と$y$軸との交点を$\mathrm{Q}$,$2$点$\mathrm{A}$,$\mathrm{P}$を通る直線$\ell_2$と$x$軸との交点を$\mathrm{R}$とする.

(1)円$C_1$の半径$r$を$m$を用いて表しなさい.
(2)円$C_1$が$x$軸と異なる$2$点で交わるような$m$の値の範囲を求めなさい.
(3)線分$\mathrm{QR}$の中点$\mathrm{S}$の座標を求めなさい.
(4)$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る円$C_2$の中心と円$C_1$の中心との距離を$d$とする.$d$の最小値とそのときの$m$の値を求めなさい.
早稲田大学 私立 早稲田大学 2011年 第6問
図のように,点$\mathrm{O}$を中心とする半径$1$の円に内接する正$9$角形の頂点$\mathrm{A}_1$,$\mathrm{A}_2$,$\cdots$,$\mathrm{A}_9$から,長さが最大となる対角線を$2$本ずつ引き,それらの交点を$\mathrm{B}_1$,$\mathrm{B}_2$,$\cdots$,$\mathrm{B}_9$とする.これらの点を$\mathrm{A}_1 \to \mathrm{B}_1 \to \mathrm{A}_2 \to \mathrm{B}_2 \to \cdots \to \mathrm{A}_9 \to \mathrm{B}_9 \to \mathrm{A}_1$の順に線分で結んでできた図形を星型$S$とよぶ.ここで,$\tan 10^\circ=a$とするとき,$\triangle \mathrm{OA}_1 \mathrm{B}_1$の辺$\mathrm{OA_1}$を底辺としたときの高さを$h$とすると
\[ h=\frac{[ナ]a}{[ニ]-a^{[ヌ]}} \]
である.よって,星型$S$の面積は$[ネ]h$である.
(図は省略)
早稲田大学 私立 早稲田大学 2011年 第2問
$xy$-平面上の円$C: x^2+y^2=1$の内側を半径$\displaystyle\frac{1}{2}$の円$D$が$C$に接しながらすべらずに転がる.時刻$t$において$D$は点$(\cos\, t,\ \sin\, t)$で$C$に接しているとする.$D$の周上の点$\mathrm{P}$の軌跡について考える.ある時刻$t_0$において点$\mathrm{P}$が$\displaystyle(\frac{1}{4},\ \frac{\sqrt{3}}{4})$にあり,$D$の中心が第$2$象限にあるとする.以下の問に答えよ.

(1)時刻$t_0$における$D$の中心の座標を求めよ.
(2)第$1$象限において,点$\mathrm{P}$が$C$上にあるときの$\mathrm{P}$の座標を求めよ.
(3)点$\mathrm{P}$の軌跡を$xy$-平面上に図示せよ.
早稲田大学 私立 早稲田大学 2011年 第2問
$xy$平面上にある$3$つの半直線
\[ y=0 (x \geqq 0),\quad y=x\tan \theta (x \geqq 0),\quad y=-\sqrt{3}x (x \leqq 0) \]
と,原点$\mathrm{O}$を中心とする半径$r (r \geqq 1)$の円が交わる点をそれぞれ$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とする.ただし$\displaystyle\frac{\pi}{6} \leqq \theta \leqq \frac{\pi}{3}$である.

(1)四角形$\mathrm{OABC}$の面積が半径$1$の円に内接する正六角形の面積の$\displaystyle\frac{1}{3}$に等しいとき,$r^2$を$\theta$を用いて表せ.
(2)$\displaystyle\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}r^2\,d\theta$を求めよ.
早稲田大学 私立 早稲田大学 2011年 第1問
次の各問に答えよ.

(1)ある工場の製品が$50$個あり,その中に不良品が$2$個だけ含まれている.このとき次の問いに答えよ.

(2)この$50$個の製品の中から$5$個を同時に取り出したとき,少なくとも$1$個の不良品が含まれる確率は$[ア]$である.
(3)この$50$個の製品の中から同時にいくつかの製品を取り出したとき,$1$個以上の不良品が含まれる確率を$\displaystyle\frac{1}{2}$より大きくなるようにしたい.このときに,取り出す製品の個数は少なくとも$[イ]$個でなければならない.

(4)$x^2+y^2=25$で表される円$A$がある.点$(7,\ 1)$から円$A$に接線を引く.

(5)接線の方程式は,$y=-[ウ]x+[エ]$と$y=[オ]x-[カ]$で表される.$[ウ]$,$[エ]$,$[オ]$,$[カ]$を正の分数で表せ.
(6)上で求めた$2$本の接線に接し,さらに円$A$に接する円は$[キ]$個ある.これらの$[キ]$個の円の半径で,最大の半径は$[ク]$であり,最小の半径は$[ケ]$である.
金沢工業大学 私立 金沢工業大学 2011年 第4問
円$x^2+y^2+4x-2y-4=0$を$C$とし,直線$y=-x+2$を$\ell$とする.

(1)円$C$の中心$\mathrm{P}$の座標は$([クケ],\ [コ])$であり,半径は$[サ]$である.
(2)直線$\ell$に関して点$\mathrm{P}$と対称な点$\mathrm{Q}$の座標は$([シ],\ [ス])$である.
(3)点$\mathrm{P}$と直線$\ell$の間の距離は$\displaystyle \frac{[セ]}{[ソ]} \sqrt{[タ]}$である.
(4)円$C$と直線$\ell$の$2$つの共有点の間の距離は$[チ] \sqrt{[ツ]}$である.
(5)点$\mathrm{Q}$を中心とし,円$C$と同じ半径をもつ円を$C^\prime$とすると,$2$つの円$C$と$C^\prime$の共通部分の面積は$\displaystyle \frac{[テ]}{[ト]} \pi-[ナ]$である.
自治医科大学 私立 自治医科大学 2011年 第15問
$2$点$(1,\ 4)$,$(2,\ 5)$を通り,$y$軸に接する円は$2$つ存在する.それぞれの円の半径を$a,\ b$とするとき,$ab$の値を求めよ.
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。