タグ「円」の検索結果

65ページ目:全908問中641問~650問を表示)
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
以下の問の$[$64$]$~$[$73$]$に当てはまる適切な数値またはマイナス符号($-$)をマークしなさい.

$xy$平面上に原点$\mathrm{O}(0,\ 0)$を中心とする円$C$と,$2$つの直線$\ell_1$,$\ell_2$がある.ただし,$a>1$とする.


円$C$ \quad\!\! :$x^2+y^2=1$
直線$\ell_1$:$\displaystyle x+\sqrt{2}y=\frac{\sqrt{3}}{a}$
直線$\ell_2$:$\displaystyle x+\sqrt{2}y=a \sqrt{3}$


円$C$と直線$\ell_1$は異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わり,それぞれの$x$座標を$x_\mathrm{A}$,$x_\mathrm{B}$とおくと,$x_\mathrm{A}<x_\mathrm{B}$である.また,直線$\ell_2$上に,$x$座標および$y$座標が共に正であるような点$\mathrm{P}$をとる.三角形$\mathrm{APB}$において,$\angle \mathrm{APB}=\theta$とすると,$\displaystyle \cos \theta=\frac{1}{a} \sqrt{a^2-1}$であり,四角形$\mathrm{OAPB}$の面積は$2 \sqrt{6}$である.

(1)線分$\mathrm{AB}$の長さは$\displaystyle \frac{[$64$] \sqrt{[$65$]}}{[$66$]}$である.

(2)$\angle \mathrm{OBP}=\frac{[$67$]}{[$68$]} \pi+\frac{[$69$]}{[$70$]} \theta$である.

(3)三角形$\mathrm{OBP}$の面積は$\displaystyle \frac{[$71$] \sqrt{[$72$]}}{[$73$]}$である.
成城大学 私立 成城大学 2012年 第1問
あるイベントが,金曜日,土曜日,日曜日に,$1$日$1$回ずつ計$3$回開催される.参加するためには,当日に会場でチケット抽せん申し込みをして,その場で当せんする必要がある.また,一度当せんしたら,それ以降の開催日の抽せんには申し込みできない.当せん確率は,金曜日は$\displaystyle \frac{1}{3}$,土曜日は$\displaystyle \frac{1}{5}$,日曜日は$\displaystyle \frac{1}{7}$である.

$\mathrm{A}$は金曜日から抽せんに申し込み,金曜日にはずれたら必ず土曜日に,土曜日にはずれたら日曜日にも抽せん申し込みをする.
$\mathrm{B}$は土曜日から抽せんに申し込み,はずれたら必ず日曜日にも抽せん申し込みをする.

(1)$\mathrm{A}$がいずれかの日にイベントに参加できる確率を求めよ.
(2)$\mathrm{A}$と$\mathrm{B}$が同日にイベントに参加できる確率を求めよ.
(3)各日のチケットの金額は,金曜日は$3000$円,土曜日は$5000$円,日曜日は$7000$円である.$\mathrm{A}$が支払う金額の期待値を求めよ.
成城大学 私立 成城大学 2012年 第2問
次の文章内の$[ア]$~$[コ]$に適当な式または数値を入れよ.ただし,$[ク]$~$[コ]$はそれぞれ$3$つの自然数の組である.

(1)$xy$平面上で,点$(-1,\ 0)$を通る傾き$t$の直線を考える.この直線が円$x^2+y^2=1$と点$(x,\ y)$(ただし,$x>0$,$y>0$)で交わるとき,$y$は$t$と$x$で,
\[ y=[ア] (ⅰ) \]
のように表される.この式を円の方程式$x^2+y^2=1$に代入して,$x$に関する$2$次方程式$[イ]=0$を得る.
この方程式を解いて,
\[ x=[ウ] (ⅱ) \]
を得る.また,式$(ⅰ)$から,
\[ y=[エ] (ⅲ) \]
となる.ただし,$t$の範囲は$0<t<[オ]$である.
(2)円$x^2+y^2=1$上の点$(x,\ y)$(ただし,$x>0$,$y>0$)の各座標がともに有理数であるとき,式$(ⅰ)$より$t$は有理数である.よって,$m,\ n$(ただし,$m>n$)を互いに素な自然数として$\displaystyle t=\frac{n}{m}$と表せば,式$(ⅱ)$,$(ⅲ)$より点$(x,\ y)$は
\[ x=\frac{[カ]}{m^2+n^2},\quad y=\frac{[キ]}{m^2+n^2} \]
と表される.
(3)等式$a^2+b^2=c^2$が成り立つような$3$つの自然数の組$(a,\ b,\ c)$(ただし,$a<b$)で,$a,\ b,\ c$の最大公約数が$1$,かつ$a<9$である組は
$(a,\ b,\ c)=(3,\ 4,\ 5),\ [ク],\ [ケ],\ [コ]$の$4$つである.
安田女子大学 私立 安田女子大学 2012年 第3問
半径$1$の円$C$上にある点$\mathrm{P}$を通る直線$\ell$が,円$C$と点$\mathrm{P}$以外で交わる点を$\mathrm{Q}$とする.また,点$\mathrm{P}$で円$C$と接する直線を$m$とし,点$\mathrm{Q}$を通り直線$m$と垂直に交わる直線を$n$とする.さらに,直線$m$と直線$n$との交点を$\mathrm{R}$,円$C$と直線$n$とが点$\mathrm{Q}$以外で交わる点を$\mathrm{S}$とする.$\mathrm{PR}:\mathrm{RQ}=1:2$,$\displaystyle \mathrm{PQ}=\frac{4 \sqrt{5}}{5}$のとき,次の問いに答えよ.

(1)線分$\mathrm{RQ}$の長さを求めよ.
(2)$\triangle \mathrm{PSQ}$の面積を求めよ.
(3)直線$\ell$上に点$\mathrm{T}$をとる.そして,この点$\mathrm{T}$は,円$C$の外部に位置しているものとし,線分$\mathrm{TQ}$の長さは$\displaystyle \frac{\sqrt{5}}{4}$とする.また,点$\mathrm{T}$から円$C$に接線を引き,その接点を$\mathrm{U}$とする.このとき,線分$\mathrm{TU}$の長さを求めよ.
安田女子大学 私立 安田女子大学 2012年 第4問
座標平面上の直線$y=2x+1$を直線$\ell$とし,直線$\ell$と$y$軸の交点を$\mathrm{A}$とする.第$1$象限内における直線$\ell$上の任意の点を中心とし$\mathrm{A}$を通る円$\mathrm{O}$を考える.直線$\ell$と円$\mathrm{O}$の交点のうち,$\mathrm{A}$と異なるもう一方の交点を$\mathrm{B}$とする.また,$\mathrm{A}$を通り$x$軸に平行な直線と円$\mathrm{O}$の交点のうち,$\mathrm{A}$と異なる交点を$\mathrm{C}$とする.このとき,次の問いに答えよ.

(1)$\sin \angle \mathrm{BAC}$の値を求めよ.
(2)直線$\mathrm{BC}$は$y$軸に平行であることを証明せよ.
(3)円$\mathrm{O}$が$x$軸と接するとき,接点の$x$座標を求めよ.
東京女子大学 私立 東京女子大学 2012年 第2問
$xy$平面上の円$C:x^2+(y-2)^2=1$において,$C$上の点$\mathrm{N}(0,\ 3)$に対し,$\mathrm{P}$は$C$上の$\mathrm{N}$と異なる点とする.また,直線$\mathrm{NP}$と$x$軸との交点を$\mathrm{Q}$とする.このとき,以下の設問に答えよ.

(1)実数$t$を用いて$\overrightarrow{\mathrm{NQ}}=t \overrightarrow{\mathrm{NP}}$と表したとき,$\overrightarrow{\mathrm{OQ}}$を$t$,$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{ON}}$を用いて表せ.ここで$\mathrm{O}$は原点を表す.
(2)$\mathrm{P}$の座標を$(a,\ b)$とおくとき,$\mathrm{Q}$の$x$座標を$a,\ b$を用いて表せ.
(3)$\mathrm{Q}$の座標が$(\sqrt{3},\ 0)$のとき,$\mathrm{P}$の座標を求めよ.
愛知学院大学 私立 愛知学院大学 2012年 第2問
図のように,円$x^2+y^2=m^2$(ただし,$m \geqq 1$)と,直線$y=x$および直線$y=-x+1$の交点をそれぞれ,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.次の値を$m$を用いて求めなさい.

(1)$\cos \angle \mathrm{AOB}$
(2)$\mathrm{BD}$の長さ
(3)四角形$\mathrm{ABCD}$の面積$S$
(図は省略)
青森公立大学 公立 青森公立大学 2012年 第1問
次の[\phantom{ア]}に適する数または式を入れよ.\\
\quad 座標平面内に円$S:x^2+y^2=4$と,円$S$上に異なる2点A$(a,\ b)$,B$(c,\ d)$があり,$ad-bc \neq 0$を満たしている.\\
\quad 点Aにおける円$S$の接線$\ell$の方程式は,$ax+by=[ア]$である.点Bにおける円$S$の接線を$m$とおくと,2直線$\ell$と$m$の交点Pの$x$座標は,$a,\ b,\ c,\ d$を用いて[イ]である.ここで,点Pの座標をP$(p,\ q)$とおくと,直線ABの方程式は,$p,\ q$を用いて[ウ]となる.\\
\quad 次に$0 \leqq \theta \leqq \pi$のとき,$t = \sin \theta + \cos \theta$とおくと,$t$の値のとりうる範囲は[エ]である.また,$t$を用いて$\sin \theta \cos \theta = [オ]$と表せる.このとき,関数$z=2\sin \theta \cos \theta + \sqrt{2}\sin \theta + \sqrt{2} \cos \theta + 6$を$t$を用いて表すと,$z = [カ]$となる.$z$の最大値は[キ]であり,最小値は[ク]となる.最小値をとる$\theta$の値は[ケ]である.\\
\quad 交点P$(p,\ q)$が,原点Oを中心とし$z$の最大値を半径とする円の周上を動くように,2点A,Bが円$S$の周上を動くとき,直線ABが通らない範囲の面積は[コ]である.
高知工科大学 公立 高知工科大学 2012年 第3問
右図のように$\mathrm{AB}=\mathrm{AC}$である二等辺三角形$\mathrm{ABC}$において,$\angle \mathrm{A}$の \\
二等分線と辺$\mathrm{BC}$の交点を$\mathrm{H}$とし,$\theta=\angle \mathrm{BAH}$,$\mathrm{AH}=1$とする. \\
$\triangle \mathrm{ABC}$の内接円$C_1$から始めて,$2$辺$\mathrm{AB}$,$\mathrm{AC}$に接し,かつ,隣り \\
合う$2$円が互いに外接する円の列$C_1,\ C_2,\ C_3,\ \cdots$を三角形の中に \\
作り,その半径を$r_1,\ r_2,\ r_3,\ \cdots$,面積を$S_1,\ S_2,\ S_3,\ \cdots$とする. \\
このとき,次の各問に答えよ.
\img{676_242_2012_1}{45}


(1)$r_1,\ r_2$の値を求めよ.
(2)数列$\{r_n\}$の一般項$r_n$を求めよ.
(3)無限級数
\[ \sum_{n=1}^\infty S_n=S_1+S_2+\cdots +S_n+\cdots \]
の和を求めよ.
京都府立大学 公立 京都府立大学 2012年 第1問
以下の問いに答えよ.

(1)$\displaystyle \frac{6}{3-\sqrt{3}}$の整数部分を$a$,小数部分を$b$とするとき,$a^2+b^2$の値を求めよ.
(2)$(x+2)^{12}$の展開式における最大の係数の値を求めよ.
(3)$3$辺の長さがそれぞれ$4$,$5$,$6$である三角形に内接する円の半径を求めよ.
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。