タグ「円」の検索結果

61ページ目:全908問中601問~610問を表示)
東京理科大学 私立 東京理科大学 2012年 第2問
$a$を正の定数とし,座標平面において放物線$C:y=ax^2$上の点$\mathrm{P}(t,\ at^2)$を考える.ただし,$t>0$とする.点$\mathrm{P}$における$C$の接線$\ell$と$x$軸の交点を$\mathrm{R}$とする.$x$軸上の点$\mathrm{Q}$を,$\mathrm{RP}=\mathrm{RQ}$を満たし,その$x$座標が$\mathrm{R}$の$x$座標より大きいものとする.

(1)点$\mathrm{P}$を通り$\ell$と直交する直線の方程式を求めよ.
(2)点$\mathrm{Q}$の座標を求めよ.
(3)直線$\ell$と点$\mathrm{P}$において接し$x$軸とも接する円で,中心が第$1$象限にあるものを考える.この円の中心の座標を$(q,\ r)$とするとき,$q,\ r$を$t$と$a$を用いて表せ.
(4)$(3)$の$q,\ r$に対して,$t$が$0$に限りなく近づくときの,$\displaystyle \frac{q}{t},\ \frac{r}{t^2},\ \frac{r}{q^2}$の極限値をそれぞれ求めよ.
広島修道大学 私立 広島修道大学 2012年 第3問
円$x^2+y^2=9$を$C$とする.円$C$が直線$y=-x+k$と異なる$2$つの共有点$\mathrm{A}$,$\mathrm{B}$をもつとき,次の問に答えよ.

(1)$k=1$のとき,線分$\mathrm{AB}$の長さを求めよ.
(2)$\mathrm{AB}=4$となるような定数$k$の値を求めよ.
(3)$\mathrm{AB}=4$かつ$k>0$のとき,点$\mathrm{A}$における円$C$の接線と点$\mathrm{B}$における円$C$の接線の交点を$\mathrm{P}$とする.三角形$\mathrm{ABP}$の面積を求めよ.また,点$\mathrm{P}$の座標を求めよ.
酪農学園大学 私立 酪農学園大学 2012年 第2問
円に内接する四角形$\mathrm{ABCD}$があり,$\mathrm{AB}=3$,$\mathrm{BC}=5$,$\mathrm{CD}=7$,$\mathrm{DA}=9$,$\angle \mathrm{A}=\theta$とする.次の各問いに答えよ.
(図は省略)

(1)$\cos \theta$の値を求めよ.
(2)四角形$\mathrm{ABCD}$の面積を求めよ.
東京理科大学 私立 東京理科大学 2012年 第4問
平面上で点$\mathrm{O}$を中心とする半径$2$の円の内側に$\mathrm{OP}=1$となる点$\mathrm{P}$をとる.点$\mathrm{P}$で垂直に交わる$2$直線と円との交点を反時計回りの順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.

(1)$\mathrm{O}$と直線$\mathrm{AC}$との距離が$\displaystyle \frac{3}{5}$のとき,四角形$\mathrm{ABCD}$の面積は
\[ \frac{[ア][イ]}{[ウ][エ]} \sqrt{[オ][カ]} \]
である.
(2)$\mathrm{O}$と直線$\mathrm{AC}$との距離が$h$のとき,四角形$\mathrm{ABCD}$の面積を$S$とおくと,
\[ S^2=-[キ]h^4+[ク]h^2+[ケ][コ] \]
であり,$S$の最大値は$[サ]$,最小値は$[シ] \sqrt{[ス]}$である.
(3)三角形$\mathrm{ABP}$の面積を$S_1$,三角形$\mathrm{CDP}$の面積を$S_2$とおくと,
\[ S_1 \cdot S_2=\frac{[セ]}{[ソ]} \]
が成り立ち,$S_1+S_2$の最小値は$[タ]$であり,最大値は$[チ]$である.
日本女子大学 私立 日本女子大学 2012年 第3問
点$\mathrm{H}$を中心,線分$\mathrm{BC}$を直径とする円を底面とし,点$\mathrm{O}$を頂点とする円錐を考える.ただし,線分$\mathrm{OH}$は底面に対して垂直であるとする.右側の図は円錐の表面の展開図の底面以外の部分である.左側の図のように底面に平行な平面で円錐を切断する.この切断面の円と母線$\mathrm{OB}$との交点を$\mathrm{A}$,母線$\mathrm{OC}$との交点を$\mathrm{D}$,直線$\mathrm{OH}$との交点を$\mathrm{G}$とする.さらに,線分$\mathrm{AB}$上に点$\mathrm{E}$をとる.左側の図で線分の長さが$\mathrm{AD}=2$,$\mathrm{BC}=8$,$\mathrm{GH}=6 \sqrt{2}$,$\mathrm{AE}=3$のとき,以下の問いに答えよ.

(1)線分$\mathrm{AB}$の長さを求めよ.
(2)線分$\mathrm{OA}$の長さと,この展開図の扇形の中心角$\theta$の大きさを求めよ.
(3)円錐の表面上で,底面を横切らずに,点$\mathrm{B}$から母線$\mathrm{OC}$上の点を経て点$\mathrm{E}$に至る最短距離を,この展開図を利用して求めよ.
(4)母線$\mathrm{OC}$と$(3)$の最短距離を与える線の交点を$\mathrm{P}$とする.線分$\mathrm{CP}$の長さを求めよ.
(図は省略)
関西大学 私立 関西大学 2012年 第2問
$a$を実数の定数とし,曲線$x^2+4y^2-2x-3=0$を$C_1$とし,円$(x-a)^2+y^2=4$を$C_2$とする.次の$[ ]$をうめよ.

(1)曲線$C_1$は楕円$\displaystyle \frac{x^2}{[$①$]}+\frac{y^2}{[$②$]}=1$を$x$軸方向に$[$③$]$だけ平行移動した楕円を表す.
(2)曲線$C_1$と円$C_2$が共有点をもつような$a$の値の範囲は$[$④$]$である.
(3)$a=0$のとき,$C_1$と$C_2$の共有点は$2$点あり,そのうち$y$座標が正である点を$\mathrm{P}$とする.点$\mathrm{P}$の$x$座標の値は$\displaystyle \frac{-1+2 \sqrt{[$⑤$]}}{3}$である.また,点$\mathrm{P}$における$C_1$の接線が$x$軸と交わる点の$x$座標の値は$3+\sqrt{[$⑥$]}$であり,点$\mathrm{P}$における$C_2$の接線が$x$軸と交わる点の$x$座標の値は$\displaystyle \frac{8 \sqrt{10}+[$④chi$]}{13}$である.
北星学園大学 私立 北星学園大学 2012年 第3問
$\angle \mathrm{A}=90^\circ$,$\angle \mathrm{B}=30^\circ$,$\mathrm{AC}=2$の$\triangle \mathrm{ABC}$がある.$\mathrm{A}$から$\mathrm{BC}$へおろした垂線の足を$\mathrm{H}$とし,$\mathrm{AH}$を直径とする円の円周と辺$\mathrm{AB}$との交点を$\mathrm{D}$とする.以下の問に答えよ.

(1)円の直径を求めよ.
(2)$\mathrm{AD}$の長さを求めよ.
岡山理科大学 私立 岡山理科大学 2012年 第3問
原点$\mathrm{O}$を中心とする半径$2$の円に,点$\mathrm{P}(4,\ 0)$から引いた$2$つの接線の接点のうち,第$1$象限にある点を$\mathrm{A}$,残りの点を$\mathrm{B}$とする.直線$\mathrm{AB}$が$x$軸と交わる点を$\mathrm{C}$とする.$\mathrm{C}$から直線$\mathrm{AP}$に引いた垂線と$\mathrm{AP}$の交点を$\mathrm{D}$とする.このとき,次の設問に答えよ.

(1)線分$\mathrm{AP}$の長さを求めよ.
(2)線分$\mathrm{CD}$の長さを求めよ.
(3)$3$点$\mathrm{P}$,$\mathrm{C}$,$\mathrm{D}$を通る円の方程式を求めよ.
広島国際学院大学 私立 広島国際学院大学 2012年 第5問
下図のように,円と$2$つの直線によって指定される領域がある.
(図は省略)

(1)斜線の領域を表す不等式を求めなさい.ただし,境界線を含むものとする.
(2)斜線の領域の面積$S$を求めなさい.
福岡大学 私立 福岡大学 2012年 第2問
次の$[ ]$をうめよ.

(1)方程式$x^2+2mx+y^2-2(m+1)y+3m^2-4m+6=0$が円を表すとき,$m$の値の範囲は$[ ]$である.また,この円の半径が最大となるとき,その円と直線$y=kx+4$とが共有点をもつための$k$の値の範囲は$[ ]$である.
(2)$10$本のくじの中に当たりくじが$k$本入っている.ただし,$0<k<10$とする.$\mathrm{A}$がくじを$1$本引き,その引いたくじをもとに戻さないで,続いて$\mathrm{B}$がくじを$1$本引く.このとき,$\mathrm{A}$と$\mathrm{B}$がどちらも当たる確率が$\displaystyle \frac{1}{5}$以下となるのは,$k$が$[ ]$以下のときである.また,$\mathrm{A}$と$\mathrm{B}$がどちらもはずれてしまう確率が$\displaystyle \frac{1}{10}$以下となるのは,$k$が$[ ]$以上のときである.
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。