タグ「円」の検索結果

58ページ目:全908問中571問~580問を表示)
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
\setstretch{1.4}
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人が協力して仕事を完成した場合は$120$万円の報酬をもらえる.しかし$\mathrm{A}$,$\mathrm{B}$の$2$人が協力して仕事を完成した場合は$60$万円の報酬に,$\mathrm{A}$,$\mathrm{C}$の$2$人が協力して仕事を完成した場合は$20$万円の報酬に減額される.さらに$\mathrm{B}$,$\mathrm{C}$の$2$人が協力して仕事を完成した場合や各人が単独で仕事を完成した場合は報酬はもらえない.\\
\quad 実際は$3$人が協力して仕事を完成し,$120$万円の報酬を得たが,この報酬を$3$者間でいかに配分したらよいかを考えた.\\
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$各人の配分額をそれぞれ$x,\ y,\ z$とすれば
\[ x+y+z=120,\quad x\geq 0,\quad y \geq 0,\quad z \geq 0 \]
である.たとえば$(x,\ y,\ z)=(40,\ 10,\ 70)$としてみる.もし$\mathrm{A}$,$\mathrm{B}$の$2$人が仕事を完成したとすれば$60$万円の報酬であるが,この配分では$\mathrm{A}$,$\mathrm{B}$は$50$万円の報酬を得る.したがって$\mathrm{A}$,$\mathrm{B}$にとっては$60-50=10$(万円)の不満である.そして$\mathrm{A}$,$\mathrm{C}$にとっては$20-110=-90$の不満である.$\mathrm{B}$,$\mathrm{C}$にとっては$-[$13$][$14$]$の不満,$\mathrm{A}$にとっては$-[$15$][$16$]$の不満,$\mathrm{B}$にとっては$-[$17$][$18$]$の不満,$\mathrm{C}$にとっては$-[$19$][$20$]$の不満である.この場合,$2$人あるいは単独で仕事を完成した場合と比較すると最大の不満は$10$,$2$番目に大きな不満は$-[$21$][$22$]$,$3$番目に大きな不満は$-[$23$][$24$]$である.\\
\quad さて配分$(x,\ y,\ z)$を考える方針として,各配分に対して,$2$人あるいは単独で仕事を完成した場合と比較して上述のように不満を計算する.そして最大の不満がより小さい配分が好ましいとする.ただし最大の不満が同じ場合は$2$番目に大きな不満,それが同じであれば$3$番目の不満といった具合に比較する.\\
\quad もっとも好ましい配分に対する最大の不満を$M$とすると,$M=-[$25$][$26$]$であることが分かる.最大の不満が$M$である配分に対して$2$番目に大きな不満を$M^{\prime}$とすると,$M^{\prime}=-[$27$][$28$]$であることが分かる.以上のことからもっとも好ましい配分は
\[ x=[$29$][$30$],\quad y=[$31$][$32$],\quad z=[$33$][$34$] \]
である.
\setstretch{1.3}
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
円$x^2+(y-1)^2=1$と外接し,$x$軸と接する円で中心の$x$座標が正であるものを条件Pを満たす円ということにする.

(1)条件Pを満たす円の中心は,曲線$y=[カ]\ (x>0)$の上にある.また,条件Pを満たす半径9の円を$C_1$とし,その中心の$x$座標を$a_1$とすると,$a_1=[キ]$である.
(2)条件Pを満たし円$C_1$に外接する円を$C_2$とする.また,$n=3,\ 4,\ 5,\cdots$に対し,条件Pを満たし,円$C_{n-1}$に外接し,かつ円$C_{n-2}$と異なる円を$C_n$とする.円$C_n$の中心の$x$座標を$a_n$とするとき,自然数$n$に対し$a_{n+1}$を$a_n$を用いて表しなさい.求める過程も書きなさい.
(3)(1),\ (2)で定めた数列$\{a_n\}$の一般項を求めなさい.求める過程も書きなさい.
明治大学 私立 明治大学 2012年 第3問
円に内接する$4$角形$\mathrm{ABCD}$について,$\mathrm{AB}=a$,$\mathrm{BC}=b$,$\mathrm{CD}=c$,$\mathrm{AD}=d$とおくとき,次の問に答えよ.

(1)$a^2+b^2=c^2+d^2$であるための必要十分条件が,$\angle \mathrm{B} = \angle \mathrm{D}$である事を証明せよ.
(2)$\displaystyle a=\frac{\sqrt{2}}{3},\ b=\frac{\sqrt{7}}{3},\ c=\frac{\sqrt{5}}{3},\ d=\frac{2}{3}$とするとき,$\cos (\angle \mathrm{A} - \angle \mathrm{C})$を求めよ.
早稲田大学 私立 早稲田大学 2012年 第4問
円$C$とその内部の点$\mathrm{P}_0$が与えられている.初め$\mathrm{P}_0$にある動点が,円周上の点$\mathrm{P}_1$まで線分$\mathrm{P}_0 \mathrm{P}_1$上を動き,$\mathrm{P}_1$からは,$\mathrm{P}_1$における円$C$の接線$\ell_1$と線分$\mathrm{P}_0 \mathrm{P}_1$のなす角が$\ell_1$と線分$\mathrm{P}_1 \mathrm{P}_2$のなす角に等しくなるように向きを変えて,円周上の点$\mathrm{P}_2$まで線分$\mathrm{P}_1 \mathrm{P}_2$上を動く(図例$1$).以下,自然数$n$について,円周上の点$\mathrm{P}_n$に至ったあとは,$\mathrm{P}_n$における円$C$の接線$\ell_n$と線分$\mathrm{P}_{n-1} \mathrm{P}_n$のなす角が$\ell_n$と線分$\mathrm{P}_n \mathrm{P}_{n+1}$のなす角に等しくなるように向きを変え,円周上の点$\mathrm{P}_{n+1}$まで線分$\mathrm{P}_n \mathrm{P}_{n+1}$上を動き,この動きをくり返す(図例$2$).線分$\mathrm{P}_0 \mathrm{P}_1$と接線$\ell_1$のなす角を$\alpha (\displaystyle 0 \leqq \alpha \leqq \frac{\pi}{2})$とする.

(1)$\mathrm{P}_m=\mathrm{P}_1$となる$3$以上の自然数$m$が存在するような角$\alpha$をすべて決定せよ.
(2)点$\mathrm{P}_1$の位置によって角$\alpha$は変化し得る.角$\alpha$が最大となる$\mathrm{P}_1$の位置,および最小となる$\mathrm{P}_1$の位置を求めよ.
(3)$\mathrm{P}_4=\mathrm{P}_1$となる点$\mathrm{P}_1$がとれるような点$\mathrm{P}_0$の存在範囲を求めよ.
(図は省略)
明治大学 私立 明治大学 2012年 第3問
$xy$平面上の曲線$C:y=x^2$上に,原点$\mathrm{O}$と異なる$2$つの点$\mathrm{P}(s,\ s^2)$,$\mathrm{Q}(t,\ t^2)$がある.ただし,$s \neq t$とする.曲線$C$上の$\mathrm{P}$,$\mathrm{Q}$におけるそれぞれの接線を$\ell_1$,$\ell_2$とし,$\ell_1$,$\ell_2$の$x$軸との交点をそれぞれ$\mathrm{P}_0$,$\mathrm{Q}_0$とする.このとき,次の各設問の$[ ]$にふさわしい解を求め,解答欄に記入せよ.

(1)$\mathrm{P}_0$の座標は$\left( [ ],\ [ ] \right)$となり,$\mathrm{Q}_0$の座標は$\left( [ ],\ [ ] \right)$となる.
(2)$\ell_1$と$\ell_2$の交点$\mathrm{R}$の座標は$\left( [ ],\ [ ] \right)$である.
(3)$\mathrm{P}_0$,$\mathrm{Q}_0$,$\mathrm{R}$を通る円の方程式を
\[ (x-a)^2+(y-b)^2=c^2 \quad \cdots\cdots① \]
とおく.円の方程式$①$が$\mathrm{P}_0$,$\mathrm{Q}_0$を通ることと,$\mathrm{P}_0 \neq \mathrm{Q}_0$であることから
\[ s+t=[ ] \quad \cdots\cdots② \]
となる.
(4)円の方程式$①$が$\mathrm{P}_0$と$\mathrm{R}$を通ることと,$②$と$s \neq 0$であることから,$s,\ t,\ a,\ b$の満たす式は
\[ \fbox{\hspace{5cm}\phantom{A}}=0 \quad \cdots\cdots③ \]
となる.同じく$\mathrm{Q}_0$と$\mathrm{R}$を通ることと,$②$と$t \neq 0$であることから,$s,\ t,\ a,\ b$の満たす式は
\[ \fbox{\hspace{5cm}\phantom{A}}=0 \quad \cdots\cdots④ \]
となる.$②$,$③$,$④$より,$a \neq 0$のとき
\[ st = \fbox{\hspace{5cm}\phantom{A}} \quad \cdots\cdots⑤ \]
を得る.同じく$a=0$のときも$⑤$が成り立つことがわかる.
(5)円の方程式$①$が$\mathrm{R}$を通ることを$a,\ b,\ c$を用いて表わすと
\[ \fbox{\hspace{5cm}\phantom{A}} \quad \cdots\cdots⑥ \]
となる.このことは,$①$が定点$\left( [ ],\ [ ] \right)$を通ることを意味する.
明治大学 私立 明治大学 2012年 第1問
以下の$[ ]$にあてはまる値を答えよ.

(1)座標平面上の点$\mathrm{P}(x,\ y)$が媒介変数$\theta$を用いて
\[ \begin{array}{l}
x=-\sin \theta+2\cos \theta \\
y= 2\sin \theta+3\cos \theta
\end{array} \]
と表されているとする.このとき,原点を$\mathrm{O}$とすると
\[ \mathrm{OP}^2 = [ア]\sqrt{2} \sin \left( [イ]\theta + \frac{\pi}{[ウ]} \right) + [エ] \]
が成り立つ.
(2)$4$つのサイコロを投げて,出た目の積を$m$とする.

(3)$m=10$となる確率は$\displaystyle\frac{[オ]}{[カ][キ][ク]}$である.また,$m=60$となる確率は$\displaystyle\frac{[ケ]}{[コ][サ][シ]}$である.
(4)$m$が$10$と互いに素になる確率は$\displaystyle\frac{[ス]}{[セ][ソ]}$である.また,$m$が$10$の倍数となる確率は$\displaystyle\frac{[タ][チ][ツ]}{[テ][ト][ナ]}$である.\\
ただし,自然数$a$と$b$が互いに素であるとは,$a$と$b$が$1$以外の公約数を持たないことをいう.

(5)$xy$座標平面上で,原点$\mathrm{O}$を中心とする半径$1$の円$\mathrm{O}$に正三角形$\mathrm{ABC}$が内接していて,三点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$はその順に反時計回りに位置している.点$\mathrm{A}$の$x$座標と$y$座標はともに正とする.直線$\mathrm{AC}$と$y$軸は点$\mathrm{D}$で交わっていて,点$\mathrm{D}$を通り直線$\mathrm{BC}$に平行な直線は,円$\mathrm{O}$に点$\mathrm{E}$で接するという.このとき,線分$\mathrm{DE}$の長さは$[ニ]$であって,$\tan (\angle \mathrm{ODE}) = [ヌ]$となる.ゆえに,点$\mathrm{A}$の$y$座標は$[ネ]$である.
立教大学 私立 立教大学 2012年 第3問
座標平面上に原点$\mathrm{O}$を中心とする半径$1$の円$C$がある.点$\mathrm{P}(p,\ 0)$と点$\mathrm{Q}(0,\ q)$を通る直線が円$C$上の点$\mathrm{R}$において円$C$と接している.ただし,$p>1$,$q>1$とする.このとき,次の問(1)~(4)に答えよ.

(1)$q$を$p$を用いて表せ.
(2)線分$\mathrm{PR}$の長さを$t$とするとき,$p$と$q$を$t$を用いて表せ.
(3)$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$を通る円の直径を$d$とするとき,$d^2$を$t$を用いて表せ.
(4)$d$の最小値を求めよ.また,そのときの$p$の値を求めよ.
立教大学 私立 立教大学 2012年 第3問
$a$は$\displaystyle a>\frac{1}{2}$を満たす定数とする.座標平面上の半径$R$の円$C_1:x^2+(y-a)^2=R^2$は,$y>0$の表す領域にある.円$C_1$が放物線$y=x^2$と共有する点は$2$点のみである.このとき,次の問いに答えよ.

(1)共有点の$y$座標および$a$を,$R$を用いて表せ.
(2)円$C_1$と放物線$y=x^2$の共有点における放物線の$2$つの接線のうち傾きが正のものを$\ell$とする.$\ell$の式を$R$を用いて表せ.
(3)点$(0,\ -a)$を中心とする半径$r$の円$C_2$が直線$\ell$と接するとき,$r$を$R$を用いて表せ.
明治大学 私立 明治大学 2012年 第3問
$xy$平面上に点$\mathrm{P}(1,\ 0)$を中心とする円:$(x-1)^2+y^2=1$がある.この円周上に$4$点$\displaystyle \mathrm{A}(\frac{9}{5},\ \frac{3}{5})$,$\displaystyle \mathrm{B}(\frac{1}{13},\ \frac{5}{13})$,$\mathrm{C}(\alpha,\ \beta)$,$\mathrm{D}(\gamma,\ \delta)$がある.ただし,$\displaystyle \delta<-\frac{4}{5}$とする.$\angle \mathrm{ABC}=90^{\circ}$であり,三角形$\mathrm{ACD}$の面積は$\displaystyle \frac{63}{65}$であるとする.

(1)点$\mathrm{C}$の座標は,$\displaystyle\left( \frac{[ツ]}{[テ]},\ -\displaystyle\frac{[ト]}{[テ]} \right)$である.

(2)$\mathrm{AB}$の長さは$\displaystyle \frac{[ナニ] \sqrt{[ヌネ]}}{[ヌネ]}$であり,$\displaystyle \cos \angle \mathrm{BDC}=\frac{[ノ] \sqrt{[ハヒ]}}{[ハヒ]}$である.

(3)点$\mathrm{D}$の座標は$\displaystyle \left( \frac{[フヘ]}{[ホマ]},\ -\frac{[ミム]}{[メモ]} \right)$であり,$\displaystyle \cos \angle \mathrm{BPD}=-\frac{[ヤユヨ]}{169}$である.
法政大学 私立 法政大学 2012年 第2問
$n$を$2$以上の整数とする.

(1)平面上の平行な$2$直線上に,相異なる点がそれぞれ$n$個ずつある.これらの$2n$個の点から$3$点を選ぶ.

(i) $n=5$のとき,この選び方は全部で$[アイウ]$通りあり,選んだ$3$点が$1$直線上にあるような選び方は$[エオ]$通りある.
(ii) 選んだ$3$点が三角形をつくるような選び方は$\displaystyle \left( [カ]-[キ] \right)$通りある.
ただし,$[カ]$,$[キ]$については,以下の$①$~$\marukyu$からそれぞれ$1$つを選べ.ここで,同じものを何回選んでもよい.
\[ \begin{array}{lllllllll}
① n & & ② 2n & & ③ 3n & & ④ n^2 & & ⑤ 2n^2 \\
⑥ 3n^2 & & ④chi n^3 & & \maruhachi 2n^3 & & \marukyu 3n^3 & &
\end{array} \]

(2)$\mathrm{O}$を中心とする円の円周を等分する$2n$個の点がある.これらの$2n$個の点と点$\mathrm{O}$から$3$点を選ぶ.

(i) $n=3$のとき,選んだ$3$点が三角形をつくるような選び方は$[クケ]$通りある.

(ii) 選んだ$3$点が三角形をつくるような選び方は$\displaystyle \frac{n \left( [コ] n^{[サ]}-[シ] \right)}{[ス]}$通りある.
(iii) $n=12$のとき,選んだ$3$点が正三角形をつくるような選び方は$[セソ]$通りある.
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。