タグ「円」の検索結果

51ページ目:全908問中501問~510問を表示)
津田塾大学 私立 津田塾大学 2013年 第2問
放物線$C:y=x^2$と点$\mathrm{P}(0,\ t)$を考える.ただし,$t$は正の実数である.$C$上の点の中で点$\mathrm{P}$との距離が最小となる点を$\mathrm{Q}$とする.

(1)$f(t)=\mathrm{PQ}^2$とするとき,関数$f(t)$のグラフをかけ.
(2)点$\mathrm{P}$を中心とし点$\mathrm{Q}$を通る円と,$C$との共有点の数を求めよ.
青山学院大学 私立 青山学院大学 2013年 第2問
$10$円硬貨$3$枚と$100$円硬貨$3$枚を同時に投げて,表の出た$10$円硬貨の枚数を$X$,表の出た$100$円硬貨の枚数を$Y$とし,$X$と$Y$の大きい方を$Z$とする.ただし,$X$と$Y$が等しいときは$Z=X$とする.

(1)$X \leqq 1$である確率は$\displaystyle \frac{[ク]}{[ケ]}$である.

(2)$Z \leqq 1$である確率は$\displaystyle \frac{[コ]}{[サ]}$である.

(3)$Z=3$である確率は$\displaystyle \frac{[シ][ス]}{[セ][ソ]}$である.

(4)$Z$の期待値は$\displaystyle \frac{[タ][チ]}{[ツ][テ]}$である.
早稲田大学 私立 早稲田大学 2013年 第2問
中心$\mathrm{A}(1,\ 1)$,半径$1$の円を$C$とする.原点を通り円$C$と異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わる直線を$\ell$とする.$\mathrm{P}$,$\mathrm{Q}$における円$C$の$2$本の接線が直交するとき,次の問に答えよ.

(1)$\triangle \mathrm{APQ}$の面積$S$を求めよ.
(2)直線$\ell$の傾きを求めよ.
(3)$2$本の接線の交点$\mathrm{R}$の座標を求めよ.
早稲田大学 私立 早稲田大学 2013年 第3問
図のように点$\mathrm{O}$を中心とする円の円周を$12$等分する$12$個の点をとり,そのうちの$1$つを点$\mathrm{A}$とする.さらに点$\mathrm{P}$,$\mathrm{Q}$を,$3$点$\mathrm{A}$,$\mathrm{P}$,$\mathrm{Q}$が互いに異なるように選ぶ.ただし点$\mathrm{A}$,$\mathrm{P}$,$\mathrm{Q}$はこの順に時計の針の回転と逆の向きに並ぶものとする.このとき,次の各問に答えよ.
(図は省略)

(1)$\triangle \mathrm{APQ}$が直角三角形になる確率を求めよ.
(2)$\triangle \mathrm{APQ}$が二等辺三角形になる確率を求めよ.
(3)点$\mathrm{O}$が$\triangle \mathrm{APQ}$の内部または周上にある確率を求めよ.
(図は省略)
早稲田大学 私立 早稲田大学 2013年 第4問
自然数の組$(x,\ y,\ z)$が等式$x^2+y^2=z^2$を満たすとする.

(1)すべての自然数$n$について,$n^2$を$4$で割ったときの余りは$0$か$1$のいずれかであることを示せ.
(2)$x$と$y$の少なくとも一方が偶数であることを示せ.
(3)$x$が偶数,$y$が奇数であるとする.このとき,$x$が$4$の倍数であることを示せ.
早稲田大学 私立 早稲田大学 2013年 第3問
$1$辺の長さが$1$の正方形$\mathrm{ABCD}$において,図のように$\mathrm{AW}=\mathrm{BX}=\mathrm{CY}=\mathrm{DZ}$となる点$\mathrm{W}$,$\mathrm{X}$,$\mathrm{Y}$,$\mathrm{Z}$をとる.四角形$\mathrm{WXYZ}$に内接する円を$C_0$とし,$\triangle \mathrm{AWZ}$,$\triangle \mathrm{BXW}$,$\triangle \mathrm{CYX}$,$\triangle \mathrm{DZY}$に内接する円をそれぞれ$C_1$,$C_2$,$C_3$,$C_4$とする.$\mathrm{AW}=x$,$\mathrm{ZW}=a$とおくとき
\[ a^2=[セ]x^2+[ソ]x+1 \quad (0<x<1) \]
となる.円$C_0$,$C_1$,$C_2$,$C_3$,$C_4$の面積の総和を$S$とすると
\[ S=\frac{\pi}{4} \left( [タ]a^2+[チ]a+[ツ] \right) \]
となり,$\displaystyle a=\frac{[ト]}{[テ]}$のとき,$S$は最小値$\displaystyle \frac{\pi}{[ナ]}$をとる.
(図は省略)
早稲田大学 私立 早稲田大学 2013年 第3問
$1$辺の長さが$1$の正方形$\mathrm{ABCD}$において,図のように$\mathrm{AW}=\mathrm{BX}=\mathrm{CY}=\mathrm{DZ}$となる点$\mathrm{W}$,$\mathrm{X}$,$\mathrm{Y}$,$\mathrm{Z}$をとる.四角形$\mathrm{WXYZ}$に内接する円を$C_0$とし,$\triangle \mathrm{AWZ}$,$\triangle \mathrm{BXW}$,$\triangle \mathrm{CYX}$,$\triangle \mathrm{DZY}$に内接する円をそれぞれ$C_1$,$C_2$,$C_3$,$C_4$とする.$\mathrm{AW}=x$,$\mathrm{ZW}=a$とおくとき
\[ a^2=[セ]x^2+[ソ]x+1 \quad (0<x<1) \]
となる.円$C_0$,$C_1$,$C_2$,$C_3$,$C_4$の面積の総和を$S$とすると
\[ S=\frac{\pi}{4} \left( [タ]a^2+[チ]a+[ツ] \right) \]
となり,$\displaystyle a=\frac{[ト]}{[テ]}$のとき,$S$は最小値$\displaystyle \frac{\pi}{[ナ]}$をとる.
(図は省略)
立教大学 私立 立教大学 2013年 第1問
次の空欄$[ア]$~$[ケ]$に当てはまる数または式を記入せよ.

(1)不等式$x |x+2|<2x$の解は$[ア]$である.

(2)$a$を実数とする.$\displaystyle \frac{3+i}{1+ai}$の実部と虚部の和が$0$であるとき,$a=[イ]$である.ただし,$i$は虚数単位とする.
(3)座標平面上の点$(2,\ 1)$から円$x^2+y^2=1$へ引いた接線の方程式は$y=1$と$y=[ウ]$である.
(4)${128}^{\frac{1}{6}},\ 8^{\frac{2}{5}},\ {81}^{\frac{1}{5}}$のうち最大のものは$[エ]$である.
(5)$\cos {165}^\circ$の値は$[オ]$である.
(6)平面上に三角形$\mathrm{OAB}$と点$\mathrm{P}$があり,$\overrightarrow{\mathrm{OP}}+2 \overrightarrow{\mathrm{AP}}+3 \overrightarrow{\mathrm{BP}}=\overrightarrow{\mathrm{0}}$を満たしている.直線$\mathrm{AB}$と直線$\mathrm{OP}$との交点を$\mathrm{Q}$とするとき,$\overrightarrow{\mathrm{OQ}}=[カ] \overrightarrow{\mathrm{OA}}+[キ] \overrightarrow{\mathrm{OB}}$である.
(7)数列$\{a_k\}$は$a_1=0$と漸化式$a_{k+1}=2a_k+1 (k=1,\ 2,\ 3,\ \cdots)$で定められている.このとき,$\displaystyle \sum_{k=1}^n \log_8 (1+a_k)=[ク]$である.
(8)数字の$1$が書かれたカードが$1$枚,数字の$2$が書かれたカードが$2$枚,数字の$3$が書かれたカードが$3$枚ある.この$6$枚のカード全部を$1$列に並べるとき,数字の$2$が書かれたカードが連続して並ぶ確率は$[ケ]$である.
日本福祉大学 私立 日本福祉大学 2013年 第2問
$\mathrm{AB}=4$,$\mathrm{BC}=3$,$\angle \mathrm{ABC}={60}^\circ$である三角形$\mathrm{ABC}$がある.

(1)$\mathrm{AC}$の長さを求めよ.
(2)$\angle \mathrm{ABC}$の二等分線上の一点を$\mathrm{D}$とし,四角形$\mathrm{ABCD}$が円に内接する場合の四角形$\mathrm{ABCD}$の面積を求めよ.
愛知学院大学 私立 愛知学院大学 2013年 第1問
$\triangle \mathrm{ABC}$に内接する円$\mathrm{O}$がある.$\mathrm{AB}=9$,$\mathrm{BC}=8$,$\mathrm{CA}=7$のとき次の問に答えなさい.

(1)$\triangle \mathrm{ABC}$の面積は$[ア]$である.
(2)円$\mathrm{O}$の半径は$[イ]$である.
(3)$\mathrm{A}$から円の中心$\mathrm{O}$を通る直線が$\mathrm{BC}$に交わる点を$\mathrm{D}$とすると,$\triangle \mathrm{ABD}$の面積は$[ウ]$である.
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。